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Abstract 
There is no doubt that the future of Loran-C is as a component of high accuracy, high 
integrity, navigation and positioning systems, in which it is integrated with GNSS 
(Global Navigation Satellite Systems). In this role, Loran will operate in a Time-of-
Arrival (TOA) mode, with users’ navigation receivers measuring pseudoranges from 
Loran-C stations. But Loran was originally a hyperbolic system. It worked in time 
difference (TD) mode and, for most legacy users, it still does. Loran still needs to cater 
for these current TD users, and also for past users many of whom maintain lists of 
significant waypoints in TD format. Some vendors of electronic maps and charts now 
wish to convert legacy Loran TDs to latitude/longitude format.  
 
Loran-C co-ordinate converters come in two distinct varieties: iterative and non-iterative. 
The more common iterative converters refine an estimate of the user’s position, 
converging to a solution after a number of iterations. The method is computationally 
intensive, may not converge quickly (or at all), and takes a variable time to find a 
solution. Further, the user must provide an initial position estimate. Non-iterative 
methods avoid all these drawbacks, producing a solution every time, in a fixed time. 

An attractive, non-iterative technique was proposed by Razin in 1967. We have further 
developed and improved Razin’s method by working in a geocentric Cartesian coordinate 
system compatible with GNSS (so eliminating the need to compute and store 14 
constants for each Loran-C chain required by Razin), and incorporating Additional 
Secondary Factors (ASF) into the algorithm. 
 
The paper begins, as did Razin, by presenting the equations for Loran-C positioning on a 
spherical earth, assuming a constant propagation velocity. We then deviate by taking 
ASFs into account. We present the computations for Razin’s “osculating sphere” and the 
associated co-ordinate conversions into geocentric Cartesian format. Finally, we show 
how to compute the final geocentric Cartesian position by means of a simple vector dot 
product. We provide sufficient detail in this paper to allow a proficient programmer to 
implement the algorithm in almost any programming language. 
 



1 Introduction 
 
Loran-C Time Difference to geographical location converters come in two distinct 
varieties: iterative and non-iterative. Non-iterative converters offer a number of 
advantages over iterative ones. Firstly, the iterative method is highly computational, 
requiring several iterations around a loop. Secondly, an iterative solution requires the user 
to enter an initial position estimate, usually manually. Each iteration through the 
algorithm then refines this estimate, converging to the final position solution. The number 
of iterations required can vary quite widely and, in some cases, the algorithm may simply 
fail to converge to the correct solution.  
 
A non-iterative method is greatly preferable to an iterative one. An important 
non-iterative technique was proposed by Razin [1], and further developed by Fell [2].  
 
In Razin’s technique, the propagation of Loran-C signals is first assumed to take place at 
constant velocity, the earth being represented by a simple “osculating” sphere rather than 
a more complex, and more accurate, ellipsoid itself. This sphere touches (i.e. “osculates”, 
or “kisses”) the earth at a point approximately central to the coverage of the Loran chain.  
Co-ordinate transformations are used to convert the positions of the Loran-C transmitters 
into the co-ordinate system of this sphere on which the position solution is performed. 
Once the position has been found on the sphere, it is converted back to its equivalent 
location on the ellipsoid. Spatial variations in the velocity of propagation are catered for 
by inclusion of secondary factor corrections in the position solution equations.  
 
In this paper we further develop Razin’s technique by: 
 
1. Eliminating the need to compute and store the 14 constants Razin requires for each 

triad of Loran-C stations. 
 
2. Demonstrating how to construct the osculating sphere and how to convert from the 

sphere to WGS84, and vice versa, using Cartesian coordinates. (Razin does not 
explain how to construct the osculating sphere in his original paper). 

 
3. Illustrating how to incorporate Additional Secondary Factor (ASF) corrections into 

the algorithm. 
 
We begin, as Razin does, by presenting the equations for computing a Loran-C position 
on a spherical earth, assuming constant propagation velocity. We then introduce ASFs. 
We compute the parameters of the osculating sphere and show how to convert 
coordinates into the geodetic Cartesian system in which we will compute the final 
position by the application of a mathematical dot product.  
 



2 Loran-C Hyperbolic Positioning 
 
First, the theory of Loran-C positioning is presented briefly. We make the following 
assumptions, which apply to both hyperbolic and circular modes of operation: 
 
1. The receiver, and all transmitters, are located on the surface of the earth. This 

assumption is acceptable since Loran-C provides no information on the height of the 
receiver.   

 
2. The earth is approximated by the WGS-84 reference ellipsoid. The use of this 

globally-accepted standard preserves compatibility with the Global Positioning 
System (GPS).  

 
3. Transmission between two points on the earth’s surface is via the Great Circle path 

between them. 
 
4. A Loran-C signal takes the following time to propagate from point i to point j :

0( / )ij SFij ASFij
ijT T Tv η= + + , (2.1) 

 where: 
 
ij = Length of the transmission path between i and j in metres, 

0v = Speed of light in a vacuum (299,792,458 ms-1), 
η = Index of refraction of the atmosphere at the surface of the earth (the United States 
Coast Guard specify a value of 1.000338), 

SFijT = Secondary phase correction of path ij , and 
ASFijT = ASF correction of path ij .

Thus, in Fig. 1: 
 

( )x ex SFxs SFms ASFxs ASFmsXS MS T T T T T T v− = − − + − + (2.2) 
 

( )y ey SFys SFms ASFys ASFmsYS MS T T T T T T v− = − − + − + (2.3) 
where: 
 
XS , MS and YS are distances in metres across the surface of the ellipsoid, between 
receiver S, and master station M and secondary stations X and Y, respectively, 
 
Ti = Time difference between the arrival of the signal from station i and the master 
station, 
 



eiT = i -Station’s Emission Delay ( ,i x y= )

0vv η= = Primary factor velocity; the velocity in air at the earth’s surface. 
 
The problem is to find the position S of the user in geographical coordinates, latitude 

sϕ and longitude, sλ .

Fig. 1 – Position of user, S, determined by measuring time differences between 
signals received from a master and two secondary stations.  

 

We could express equations 2.2 and 2.3 in terms of the position of the user, S, ( , )S Sϕ λ .
However, this would be difficult because computation of distance on the WGS84 
ellipsoid is complicated and non-linear. Also, the propagation velocity is not everywhere 
the same, but rather is a non-linear function of distance from the transmitter. For these 
reasons, the conventional approach to solving this problem is to use an iterative technique 
[3].   
 

3 Solving the Loran-C Positioning Problem 
 
The key steps in Razin’s non-iterative method are as follows:  
 
1. Convert the Loran-C transmitter locations from WGS-84 positions to positions on the 

osculating sphere that is tangential at a point to the WGS-84 ellipsoid.  
 



2. Making the assumption that signals propagate at the speed of light through air (the 
“Primary Factor”) across the surface of this sphere, solve the propagation equations to 
give the position of the receiver. 

 
3. Apply corrections for Secondary Factor (SF) and ASF delays. 
 
4. Convert the resulting receiver co-ordinates to coordinates on the WGS-84 ellipsoid.  
 
We will now describe how each of the steps outlined above is carried out. Sections 3.1 
and 3.2 introduce the coordinate conversions required, and demonstrate the construction 
of the osculating sphere. Section 3.3 shows the development of the propagation 
equations, and shows how we include the effects of the SF and ASF.  
 

3.1 Step 1: Converting co-ordinates from WGS-84 to a sphere 
 
We convert all coordinates of interest from the WGS-84 (Datum 1) to the equivalent 
coordinates on the sphere (Datum 2). Throughout, the coordinates will be expressed in a 
geocentric Cartesian coordinate system. This system offers the advantage of being 
completely defined by the directions of three axes and the position of the origin, with 
none of the complications of the reference ellipsoid or a projection grid.  
 
Since the sphere is itself a special case of an ellipsoid, the datum transformation is 
relatively simple. Fig. 2 shows the principle employed. The black ellipse represents the 
WGS-84 ellipsoid. The red circle is the osculating sphere; we imagine the sphere’s being 
free to roll around on the inside surface of the hollow ellipsoid, the two touching at the 
single tangent point which lies close to the centre of the coverage area of the Loran-C 
chain. For clarity in Fig. 2, the radius of the sphere is shown as much smaller than that of 
the ellipsoid; in practice, it would be the same as the total radius of curvature of the 
WGS-84 ellipsoid at the tangent point. 
 
In general, datum transformations involve translation of the origin of the co-ordinate 
system and rotation of the co-ordinate axes. In this case, we choose to make the 
coordinate axes of the sphere parallel to those of the WGS-84 ellipsoid so that only 
translation, by an amount equal to the offset between their centres, is required. This offset 
vector [ ]TX Y Z∆ ∆ ∆  is represented by the green line 84wgs SphereC C− in Fig. 2.  
 



Fig. 2 – The WGS-84 ellipsoid and the osculating sphere.  
 

Fig. 3 – Plane section of an ellipse, after [4].  
 



3.1.1 General Coordinate Conversion 
 
We first of all review how to convert from the coordinate system of geodetic latitude and 
longitude to the geocentric Cartesian coordinate system, then we convert from one datum 
to another.    
 
Fig. 3 illustrates an example plane section through an ellipse defined by the semi-minor 
and semi-major axes, b and a. Referring to this figure, Appendix 1 of [4] shows that: 
 

2 2
( )

1 ( )
a Cosw

e Sin
Φ= − Φ (3.1) 

 
2

2 2
(1 ) ( )
1 ( )

a e SinZ
e Sin

− Φ= − Φ , (3.2) 

where 
2

21 be a= − is the eccentricity of the ellipse and Φ is the geodetic latitude of the 
point P on the ellipsoid.  
 
We now perform the transformation from the ellipsoid, Datum 1, to the sphere, Datum 2. 
Assume that a position 1P in Datum 1 is given by coordinates 1 1 1( , , )hΦ Λ , which 
represent latitude, longitude and height, respectively. So, including the height of the point 

1h we can calculate: 
 

1 1 1( )w w h Cos= + Φ , (3.3) 
 

1 1 1( )Z Z h Sin= + Φ . (3.4) 
 

From Equations 3.1 to 3.4, we see that the geocentric Cartesian coordinates of 1P on the 
ellipsoid is given by: 
 

1
1 1 1 1 1 12 2

1 1
( ) ( ) ( )

1 ( )
aX w Cos h Cos Cos

e Sin
  = Λ = + Φ Λ − Φ 

 (3.5) 

 
1

1 1 1 1 1 12 2
1 1

( ) ( ) ( )
1 ( )

aY w Sin h Cos Sin
e Sin

  = Λ = + Φ Λ − Φ 
 (3.6) 

 
2

1 1
1 1 12 2

1 1

(1 ) ( )
1 ( )

a eZ h Sin
e Sin

 − = + Φ − Φ 
. (3.7) 



Datum 2 differs from Datum 1 by a displacement of the centre, and by the eccentricity 
and semi-axes of the ellipse. In our special case, the eccentricity of the sphere (Datum 2) 
is 0; the sphere’s radius will be computed later.  
 
We next determine the equations to compute the displacement. The coordinate 
transformation, from Datum 1 to Datum 2, is achieved by using the simplified Helmert 
transformation of Equation 3.8: 
 

2 1

2 1

2 1

X X X
Y Y Y
Z Z Z

= + ∆ = + ∆ = + ∆ 
, (3.8) 

from which we can calculate 2w :

2 2
2 2 2w Y Y= + . (3.9) 

 
We can now convert back to geodetic latitude and longitude if we so wish. Longitude is 
given by: 
 1 2

2
2

YTan X
−  Λ =   

. (3.10) 

 

For computing the geodetic latitude in Datum 2, from Equations 3.1 to 3.4 we get the 
equivalent equations: 
 

2
2 2 22 2

2 2
( )

1 ( )
aw h Cos

e Sin
  = + Φ − Φ 

 (3.11) 

 
2

2 2
2 2 22 2

2 2

(1 ) ( )
1 ( )

a eZ h Sin
e Sin

 − = + Φ − Φ 
 (3.12) 

 
and noting that, for the special case of a sphere, 2

2 0e = , we divide (3.12) by (3.11) and so 
obtain the latitude in Datum 2: 
 

1 2
2

2

ZTan w
−  Φ =   

. (3.13) 

 
So once we know the offsets in Equation 3.8, we can use these transformations to convert 
back and forth between WGS-84 and the sphere. We can stay in the geocentric Cartesian 
coordinate system, or use Equations 3.9 to 3.13 to convert back to latitude and longitude.  



We now need to determine the offsets in Equation 3.8; this is shown in Sub-section 3.1.2, 
where we illustrate how to construct the osculating sphere.  
 
3.1.2 The Osculating Sphere 
 
We can now use the transformation derived in Sub-section 3.1.1 to determine the 
parameters of the osculating sphere that best fits the ellipsoid across the coverage region 
of the Loran-C chain. We then determine the values of ,X Y∆ ∆ and Z∆ in Equation 3.8.   
 
We start by establishing a common point of reference in the two systems, the “tangent” 
point at which the sphere touches the ellipsoid. Razin suggests that this should lie in the 
centre of the service area of the Loran chain. Our software establishes a suitable tangent 
point by taking as its components the average of the latitudes, MeanΦ , and the average of 
the longitudes, MeanΛ , of the transmitters. This averaging is actually performed in 
Cartesian coordinates, to which the Loran-C transmitter coordinates have first been 
converted from latitude and longitude.  
 
We assume that the coordinates of the tangent point are the same in the two systems, 
( )0 0,Φ ∆ , and we compute ( ) ( )0 0, ,Mean MeanΦ Λ = Φ Λ . From the Cartesian coordinates 
then: 
 

1
0

Mean

Mean

YTan X
−  Φ =   

(3.14) 

 ( )
1

0 21
Mean

Mean

ZTan w e
−   Λ =  − 

. (3.15) 

 
Next we make the radius of the sphere equal to the radius of curvature of the WGS-84 
ellipsoid at the common point: 
 

0 0R M N= , (3.16) 
in which, 
 

( )

2

0 3
2 2 2

0

(1 )
1 ( )

a eM
e Sin

−=
− Φ

, (3.17) 

and 
 

0 2 2
0(1 ( )

aN
e Sin

= − Φ . (3.18) 

 



In these three equations, M0 and N0 are the radius of curvature along, and perpendicular 
to, the meridian passing through ( )0 0,Φ ∆ , respectively.  
 
We next calculate the offset between the centres of the sphere and the WGS-84 ellipsoid. 
From 3.8 we know that: 

2 1

2 1

2 1

X X X
Y Y Y
Z Z Z

∆ = − ∆ = − ∆ = − 
. (3.19) 

 
Here 1 1 1( , , )X Y Z is the tangent point in the reference frame of the ellipsoid and 

2 2 2( , , )X Y Z is the tangent point in the reference frame of the sphere, with its radius R .

The spherical solution of the equations requires the coordinates of the transmitters to be 
converted to coordinates on the sphere, using Equation 3.19. Simple rearrangement of 
this equation gives us the inverse transformation, so letting us convert from Cartesian on 
the sphere 2 2 2( , , )X Y Z , back to Cartesian on WGS-84, 1 1 1( , , )X Y Z .

3.1.3 The Effect of Height 
 
Fig. 4 shows the effect of the unknown height of the receiver on the coordinate 
transformation. The height is unknown since Loran-C gives no height information, 
whether in stand-alone hyperbolic or circular mode. So we assume that 

1 0h = everywhere. We need not be concerned with the height value 2h either, since 
neglecting height in these coordinate conversions has little effect on horizontal position: 
Ashkenazi, Moore and Hill [5] have shown that a height error, h, as gross as 8000m 
results in a horizontal error ( ' ''P P− in Fig. 4) of just 15cm, in a variety of 
transformations!  
 

Fig. 4 – The effect of the unknown height on the datum transformation.  



3.2 Step 2: The Loran-C Solution on a Sphere 
 
In this sub-section we present Razin’s derivation of the propagation equations. As we 
have seen, he approximates the earth by an osculating sphere of radius R , and assumes 
that the velocity of propagation is a constant value, v , the primary velocity in air. He then 
represents Equations 2.2 and 2.3 as: 

 
is ms iPθ θ= + , for ,i x y= (3.20) 

 
Equation 3.20 embodies the assumption that the distance ij of Equation 2.1 is equivalent 
to an angle ijθ subtended at the center of the sphere of the earth. Referring to Fig. 5, M, X
and Y are the master and two secondary stations. The aim is to calculate the angles 

,xs ysθ θ and msθ , from which the position of S can be computed.  
 
Now,  
 ( )i i ei

vP T TR= − for ,i x y= . (3.21) 
 
If we take cosines of both sides of Equation 3.20 we get: 
 

( ) ( ) ( ) ( ) ( )is ms i ms iCos Cos Cos P Sin Sin Pθ θ θ= − , for ,i x y= . (3.22) 
 
Using the angles on the surface of the sphere illustrated in Fig. 5, and the law of cosines 
on a sphere, we get the following: 
 

( ) ( ) ( ) ( ) ( ) ( )is mi ms mi ms iCos Cos Cos Sin Sin Cosθ θ θ θ θ β= +  for ,i x y= (3.23) 
 

Fig. 5 – Angles on the surface of the osculating sphere  



We can now equate Equation 3.22 with Equation 3.23. Rearranging this yields: 
 

( ) ( )( ) ( ) ( ) ( )
i mi

ms
i mi i

Cos P CosTan Sin P Sin Cos
θθ θ β

−=
+

, for ,i x y= . (3.24) 
 
Referring to Fig. 5 and using a trigonometric identity we see that: 
 

( ) ( ) ( ) ( ) ( ) ( )y x x xCos Cos K Cos K Cos Sin K Sinβ β β β= − = +  (3.25) 
 
Also, Equation 3.24 describes 2 equations, one for each of ,i x y= . We can equate the 
right-hand-sides of the two equations to one another, since ( )msTan ϑ is common. 
Replacing ( )yCos β , in these equations, with the identity in Equation 3.25 allows us to 
solve Equation 3.24 for ( )xCos β :

2 2 2
3 1 2 1 2 3

2 2
1 2

( )x
u u u u u uCos u uβ ± + −

=
+

, (3.26) 
where, 
 

( ) ( )
( )

i mi
i

mi

Cos P Cosa Sin
θ

θ
−= , for ,i x y=

1 ( )x yu a Cos K a= −

2 ( )xu a Sin K=

3
( )( )

( ) ( )
yx

y x
mx my

Sin PSin Pu a aSin Sinθ θ= −

Once the time-differences, xT and yT have been calculated, we follow the procedure 
outlined in the flow-chart of Fig. 6. to calculate the angles ,xs ysθ θ and msθ between each 
station and the unknown location of the user.  
 



Fig. 6 – Flow-chart of angle computation process.  



3.3 Step 3 - Sea-water and ASF Corrections 
 
So far, we have assumed that the velocity of propagation is both constant and equal to the 
Primary Factor velocity (the velocity of light in the earth’s atmosphere at the surface of 
the earth). However, Loran-C receivers assume in the first instance that all signals 
propagate over sea-water paths. In order to do the same, we need to apply the sea-water 
secondary factor which is, however, a function of range from the transmitter.  
 
Also, in order to take the effects of land paths into account we must include the ASF. 
Since ASFs vary spatially, we first need to know the location of the receiver (at least 
approximately) in order to establish the appropriate ASFs. The accuracy with which the 
location needs to be established depends on the resolution of the ASF database. In the 
algorithm of Fig. 6, we first compute an approximate position without ASFs, then look up 
the ASFs there, and finally re-compute the position with those ASFs taken into account.   
 

3.4 Step 4 - Solving for the User’s Position 
 
Unlike Razin, we propose computing the receiver’s geographical position in Cartesian 
coordinates. We calculate the position by using knowledge of the dot products, i s⋅ ,
between the vectors representing the Cartesian coordinates of the Loran-C stations and 
the user ( i and s respectively), that is, the arrows labeled ‘R’ in Fig. 7.  
 

Fig. 7 – The angles on the sphere showing the vectors used in our dot-product 
solution. 

 



Referring to this figure, Equation 3.27 shows the relationship between the dot product of 
a pair of vectors, the lengths of the vectors i and s given by i and s respectively, and 
the angle between them, isϑ :

( )isi s i s Cos θ⋅ = for ( , , )i m x y= . (3.27) 
 

The magnitude, or length, of each of the vectors i and s is equal to R , the radius of the 
sphere. 
 
The location vector, s , of the receiver with respect to the center of the sphere is given by 
( , , )s s sX Y Z . We create a set of three simultaneous equations using Equation 3.27, one for 
each Loran-C station in the chosen triad.   
 
Using matrix and vector notation we define the set of equations given by: 
 

As b= (3.28) 
 
where A is a 3 3× matrix containing the Cartesian coordinates of the three Loran-C 
stations (m, x and y) of the triad used to establish the fix: 
 

x x x

y y y

m m m

X Y Z
A X Y Z

X Y Z

  =    
, (3.29) 

 
and b is defined as: 
 

2

2

2

( )
( )
( )

xs

ys

ms

R Cos
b R Cos

R Cos

θ
θ
θ

  =    
. (3.30) 

 
The solution is then: 

 1s A b−= . (3.31) 
 
Finally, the resulting Cartesian vector, s , is converted back to the WGS-84 ellipsoid by 
application of the offsets computed in Equation 3.19, and subsequently converted to 
geographical coordinates using the methods shown in Section 3.1.   
 
The method explained in Equations 3.27 to 3.31 avoids having to compute and store the 
14 separate constants for each Loran-C triad employed by Razin. Razin does not show 
how to compute these constants in [1]. 
 



4 Testing the Implementation 
 
The algorithm described in Section 3 has been implemented as a Microsoft Windows™ 
program written in Microsoft Visual C++. The performance of the algorithm has been 
checked by comparing the results given by the program against those of the iterative 
solution specified by the Radio Technical Commission for Marine Services [3].  
 
First, the data shown in Table 1 was used. The Loran triad was Malone (M), Grangeville 
(W) and Jupiter (Y) from the Southeast US chain (GRI 7980). The two right-most 
columns show the differences between the latitudes and longitudes computed by the two 
methods, expressed in minutes of arc. The root mean squares (RMS) of these differences 
correspond to 0.03 seconds latitude (approximately 1m), and 0.02 seconds longitude 
(approximately 0.5m).   

 
Fig. 8 shows a MapInfo™ plot of Loran-C position measurements collected at Bangor, 
North Wales. The stations Sylt, Lessay and Vaerlandet of the Sylt (GRI 7499) chain were 
used for this experiment. The dots are positions computed when ASFs were included 
(blue), and omitted (red). The error ellipse of the plots is elongated because of the 
geometry of the stations as seen from Bangor, with the Sylt-Vaerlandet pair presenting a 
higher TD-change to distance-change gradient than the Sylt-Lessay pair.  
 
Fig. 9 repeats the results, with ASFs included, comparing those given by the non-iterative 
method proposed in this paper (blue dots) with those given by the traditional iterative 
method (green dots). The discrepancy is on the order of just 2m. It is principally in the 
form of a shift believed to be due to the non-optimal location of the tangent point.  

 





Name of Area Loran-C TDs (µµµµs) Non-iterative Loran-C
Position

Iterative Loran-C Position Difference

Latitude Longitude Latitude Longitude Delta Lat. Delta Lon.
M-W M-Y Deg. Min. Deg. Min. Deg. Min. Deg. Min. Minutes Minutes

Anchor Chain 14147.7 43205.8 25 8.1843 -80 15.9788 25 8.1838 -80 15.9785 0.0005 0.0003
City of Washington 14149.8 43202.6 25 8.8829 -80 15.3181 25 8.8824 -80 15.3177 0.0005 0.0004
Little Grecian 14142.5 43214.7 25 6.7745 -80 17.9671 25 6.7740 -80 17.9668 0.0005 0.0003
Mike's Wreck 14149.8 43201.7 25 8.5856 -80 14.9771 25 8.5851 -80 14.9768 0.0005 0.0003
North North Dry
Docks

14145.5 43211 25 8.0520 -80 17.3512 25 8.0514 -80 17.3508 0.0006 0.0004

South Ledges 1 14149.4 43202 25 8.3502 -80 14.9861 25 8.3497 -80 14.9858 0.0005 0.0003
South Ledges 2 14147 43206.5 25 7.8317 -80 16.0617 25 7.8312 -80 16.0614 0.0005 0.0003
The Fingers 14148.5 43204.7 25 8.4894 -80 15.7719 25 8.4889 -80 15.7716 0.0005 0.0003
The Horseshoe 14145.9 43210.3 25 8.1561 -80 17.1935 25 8.1556 -80 17.1931 0.0005 0.0004
Train Wheel 14147.9 43206 25 8.4160 -80 16.1047 25 8.4154 -80 16.1044 0.0006 0.0003
White Banks 14128.4 43236.9 25 2.3551 -80 22.5961 25 2.3544 -80 22.5957 0.0007 0.0004

Table 1. – Sample TD values converted to latitude and longitude using the proposed non-iterative algorithm, compared with
results calculated using RTCM iterative method.



Fig. 8 – Position fixes computed from Loran TD measurements taken at Bangor. 
Red: ASFs omitted. Blue: ASFs included.  

 

Fig. 9 – Position fixes computed from Loran TD measurements taken at Bangor. 
Blue: non-iterative solution. Green: RTCM-75 iterative solution.   



5 Practical Issues 
 
The locations of the transmitters need only be converted from WGS-84 to spherical co-
ordinates once and for all; this may be done at the start of the process.  
 
We have not investigated the effects of varying the position of the tangent point; the 
results were produced using the averaging method of establishing the tangent point 
described above.  
 

6 Summary and Conclusions 
 
In this paper we have reviewed Razin’s method for computing geographical positions 
from Loran-C TD data. We have proposed implementing his method in a new way that 
employs a dot product in geocentric Cartesian co-ordinates. This solution removes the 
need for the computation and storage of 14 constants for each station triad required by 
Razin. Razin does not show how to compute these constants, neither does he illustrate a 
method of computing the osculating sphere and the offset vector required for converting 
co-ordinates between the two geodetic data. The algorithm has been implemented in 
Microsoft Visual C++ and tested using a number of TD’s measured using the Southeast 
US, and the Sylt (GRI 7499), Loran-C chains.  
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