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Abstract

The high-resolution ESPRIT eigen-decompostion technique is applied to the
problem of estimating the delay of Loran-C skywaves. The performance of this
technique is evaluated and compared with Fourier-based methods. The simulation
results show that the ESPRIT algorithm yields good estimation accuracy and that
it can also operate successfully with noisy signals. Results using off-air data confirm
these conclusions.

1 Introduction

Loran-C is a pulsed, low-frequency (100 kHz), hyperbolic, radio-navigation system for po-
sition fixing by reference to terrestrial transmitting stations. Although a long-established
and well-known system, Loran is currently being studied intensively in its role as a com-
plement to GNSS [e.g. FAA, LORIPP, LORAPP programmes]. The US Volpe Report and
other documents have demonstrated the vulnerability of GNSS to accidental and inten-
tional interference and identified Loran as a most promising complement, since it shares
almost no vulnerabilities with GNSS. This enhanced interest in Loran has focussed in
part on the technology of receivers. As a result, the application of advanced digital signal
processing techniques has produced dramatic improvements in receiver performance.

Among the properties of Loran undergoing intensive evaluation currently is its integrity
and, specifically, the confidence with which cycles of the 100 kHz signal can be identified
within the Loran pulses. This paper makes a contribution to that discussion since it
addresses the question of skywave contamination.

To explain, Loran-C employs the ground-wave components of the transmitted signals
for position determination since their propagation velocities are normally exceptionally
stable in time. However, noise affects the received signals. Also, various propagation
effects and the front-end filters of receivers alter the shapes of the received pulses. These
factors all lead to inaccuracies in the measured positions. So, too, do unwanted skywave
signal components received via ionospheric paths.



The ability of Loran-C receivers to resist this skywave contamination is its major
advantage over earlier continuous-wave low-frequency navigation aids. As a consequence
of the techniques employed, a single chain of Loran-C transmitters can provide coverage
of a large geographical area.

It is conventionally assumed that Loran-C receivers avoid skywave contamination by
processing only samples taken prior to the arrival of the first skywave component, typ-
ically 35-60 µs after the groundwave. This technique has significant limitations when
implemented in receivers of finite bandwidth, since such receivers increase the rise times
of the Loran-C pulses and substantially reduce the amplitudes of the groundwave signals
at the sampling point. As a result, many current receivers are designed to take samples
later in the pulse and consequently suffer skywave errors. An attractive solution to the
skywave problem is a receiver that adaptively adjusts the sampling point (for each station)
to the optimal value as the skywave delay varies. Such techniques should enable the re-
ceiver to minimise the errors due to skywave interference while maximising signal-to-noise
and signal-to-interference ratios.

The question of skywave contamination, and receivers’ ability to deal with it, are
currently of especialy interest to those studying the question of the exceptionally early
skywaves which appear to affect signals received at higher latitudes, such as at sites in
Alaska [1, 2].

At previous ILA Conventions and in recent publications we have demonstrated the
feasibility of using Fourier-based and other high-resolution techniques for estimating the
skywave delays of Loran-C signals. In those papers, we demonstrated that the problem
of estimating the arrival times of the groundwave and skywave components of a Loran-C
signal is analogous to that of isolating the components of a composite signal in the fre-
quency domain. That has let us take advantage of recent advances in frequency-domain
signal-processing techniques. The principle of one of the most recent of such techniques,
based on the eigendecomposition approach, will be explained, and we will show how it can
be modified to make it suitable for detecting the onset of skywaves in Loran-C receivers.

We will assess the performance of this new eigendecomposition approach when used
to identify and measure skywave components, and compare it with those of previous-
investigated algorithms. Of eigendecomposition algorithms, the relatively-new ESPRIT
algorithm [3]-[6] appears particularly promising and superior to the other algorithms in-
vestigated previously [7].

The paper will employ for these tests a mathematical model of a Loran-C signal that
describes it in the time and frequency domains. The proposed new skywave detection
technique will be reviewed and its principal limitations discussed. Its performance will
be assessed by theoretical analysis, by computer simulation under a range of realistic
conditions, and by the use of off-air signals recorded in real time by a receiver.

2 Loran-C Signal Model

It was shown in [7] that the received Loran-C signal may be represented in either the
time domain or the frequency domain. This composite signal consists of the groundwave
and skywaves, plus noise and interference. The signal model used in estimating skywave
delay assumes that the skywaves pulses have the same shape as the groundwave but that
they are delayed in time and scaled in amplitude. Therefore, the composite signal xc(t)



can be expressed in the time domain as:

xc(t) = xg(t) +
N∑

n=1

knxg(t− τn) + w(t) (1)

where xg(t) is the groundwave signal and w(t) is the noise. The amplitude and delay of
the n-th skywave component relative to the groundwave, are represented by kn and τn,
respectively.

By taking the Fourier Transform of eqn. (1), we obtain the equivalent representation
of the composite signal in the frequency domain:

Xc(f) = Xg(f)

[
1 +

N∑

n=1

kne
j2πfτn

]
+ W (f) (2)

where Xc(f), Xg(f) and W (f) are the Fourier Transform of xc(t), xg(t) and w(t), respec-
tively.

Equations (1) and (2) constitute the signal model which will be used in estimating the
Loran-C skywave parameters. This model is valid for Fourier and eigen-based techniques.

3 Fourier-based IFFT Technique

In this section we briefly present a well known technique based on Fourier analysis for
the purpose of skywave identification in Loran-C receivers. This technique is known
as the spectral-division Inverses Fast Fourier Transform algorithm, or simply the IFFT
algorithm, which has been shown to provide good performance and robustness.

As shown in [7], we start by dividing the spectrum of the signal in eqn. (2) by the
spectrum of a standard Loran-C pulse. This is the spectral-division concept. We then
return to the time domain by taking the Inverse Fourier Transform of the result. This
process can be represented mathematically as:

F−1

{
Xc(f)

X0(f)

}
= kg

[
δ(t) +

N∑

n=1

knδ(t− τn)

]
+ F−1

{
W (f)

X0(f)

}
(3)

where F−1 represents the Inverse Fourier Transform operator, X0(f) is the spectrum of
the normalised standard Loran-C pulse x0(t); kg is a constant related to the amplitude of
the groundwave. From the time domain expression in eqn. (3) we observe impulses at the
arrival times of the groundwave and skywave components, from which the onset skywave
delay can be found.

4 Eigen-decomposition Frequency Estimation

Techniques

This section describes the principle of frequency estimation using eigen-decomposition
techniques. Considerable research has been directed to these techniques in recent years
because of their superior ability to resolve closely-spaced frequencies of multiple, super-
imposed, sinusoids in noisy signals [3]-[6]. In particular, we have employed an eigen-
decomposition technique, using the Estimation of Signal Parameters via Rotational In-
variance Techniques (ESPRIT) algorithm, in place of the IFFT in eqn. (3). We will



discuss first the mathematical treatment of the eigen-decomposition techniques followed
by the analysis of ESPRIT algorithm.

4.1 Eigen-decomposition Analysis Principle

Consider a signal x(n) that contains P complex exponential signals s(n) and additive
white Gaussian noise w(n); that is:

x(n) = s(n) + w(n), (4)

and

s(n) =
P∑

p=1

Ape
j2πfpp+θp . (5)

where Ap, fp and θp denote the amplitudes, frequencies and the phases of the complex

exponential signals. The (M×M) autocorrelation matrix R̂x of the signal x(n) is defined
by:

R̂x = E{x(n)xH(n)} = APAH + σ2
wI, (6)

where σ2
w is the noise variance. The x(n) signal vector is given by:

x(n) =
[
x(n), . . . , x(n−M + 1)

]T
(M × 1). (7)

and A is an (M × P ) matrix of rank P which contains the exponential elements:

A =
[
a(f1), a(f2), . . . , a(fP )

]
(M × P ), (8)

where
a(f) =

[
1, e−j2πf , . . . , e−j(M−1)2πf

]T
(M × 1). (9)

The matrix I is the (M ×M) identity matrix and P is an (M × P ) diagonal matrix with
the powers, A2

p, of the P exponentials:

P =




A2
1 0

. . .

0 A2
p


 (M × P ). (10)

The eigen-decomposition of the autocorrelation matrix R̂x is defined as:

R̂x = UΛUH =
M−1∑

n=0

λnunu
H
n , (11)

where U is the eigenvector matrix defined as:

U =
[
u1, u2, . . . , uM

]
, (12)

and Λ is the eigenvalue diagonal matrix

Λ =




λ1 0
. . .

0 λM


 (M ×M). (13)



The eigenvalues of the diagonal matrix Λ of R̂x are ordered as λ1 ≥ λ2 ≥ . . . ≥ λM > 0
and U is the related eigenvectors. The eigenvalues and the related eigenvectors can be
divided into a noise eigenvector matrix with the related eigenvalues λn+1 = . . . = λM =
σ2

w, and a signal eigenvector matrix with the related eigenvalues λ1 ≥ . . . ≥ λM >
σ2. Hence, we can decompose R̂ as the sum of two autocorrelation matrices: the noise
covariance matrix R̂w and the signal covariance matrix R̂s defined respectively by:

R̂w = UwΛwUH
w = σ2

wI, (14)

R̂s = UsΛsU
H
s = APAH, (15)

where matrix Us contains the signal eigenvectors and is written as:

Us = AT. (16)

The full-rank matrix T has the same subspace sizes as the complex exponential matrix
A and the signal matrix Us. Finally, a frequency estimation algorithm can be used to
extract estimate of the frequencies and related parameters. One such eigen-decomposition
frequency estimation technique is the ESPRIT algorithm discussed in the next section.

4.2 The ESPRIT Algorithm

In this section we explain the principle of estimating the frequencies of exponential sig-
nals in noise using the ESPRIT algorithm. We start by generating the autocorrelation
matrix R̂x, size (M × M), of the signal using eqn. (6) and then we employ the eigen-
decomposition analysis in order to find its eigenvectors and the related eigenvalues.

The signal eigenvector matrix Us is formed by taking the P eigenvectors related to the
largest eigenvalues λs. We define two sub-matrices A1 and A2, respectively, as follows:

A1 =
[
IM−1 0

]
A, (17)

A2 =
[
0 IM−1

]
A. (18)

where the construction of the matrix A is shown in eqn. (8). The sub-matrices are
arranged such that A1 contains the first M−1 rows of A, and A2 contains the last M−1
rows of A, respectively. This is called the shift structure. IM−1 is an identity matrix of

size (M − 1)× (M − 1). The matrices
[
IM−1 0

]
and

[
0 IM−1

]
are (M − 1)×M , and 0 is

a vector with zeros. The relation of A1 to A2 is given by:

A2 = A1D, (19)

where D is

D =




e−j2πf1 0
. . .

0 e−j2πfi


 (P × P ). (20)

The matrix D is a diagonal matrix which contains the frequency elements e−j2πfi . The



eigenvector matrix Us corresponding to the signal subspace can also be divided into two
similar sub-matrices which are defined as follows:

Us1 =
[
IM−1 0

]
Us, (21)

and
Us2 =

[
0 IM−1

]
Us. (22)

The relation of Us1 to Us2 is given by:

Us2 = Us1Φ̂, (23)

where Φ̂ is found by least squares approximation:

Φ̂ =
(
UT

s1
Us1

)−1
UT

s1
Us2 . (24)

It can be shown that Φ̂ is related to D by:

Φ̂ = T−1DT. (25)

It can be seen from eqn. (19) that both D and Φ̂ have the same eigenvalues. Using this
result, the estimation of the frequencies fi of the signal can be accomplished by using the
following equation:

fi =
− arg(λi)

2π
, (26)

Where λi are the eigenvalues of Φ̂.

5 Performance Evaluation

This section evaluates the performance of the algorithms under noisy conditions. The
evaluation will be conducted by means of computer simulation employing a Monte Carlo
method and by the use of off-air data. The simulation setup is discussed first, followed
by the simulation results.

5.1 Simulation Setup

In this section the Matlab implementation of the combined Loran-C and skywave estima-
tion system will be explained. The simulation setup contains three channels: the signal
generation channel, the receiver front-end channel and the skywave estimation channel.
The functional block diagram of the simulation program is shown in Figure 1.

The Program Control sets up the initial parameters in all the functional blocks and
controls their operations. Simulated Atmospheric Noise (SAN), generated in accordance
with the standard defined in the Loran-C Minimum Performance Standards (MPS) [8], is
added to the separately generated Loran-C groundwave and skywaves. The parameters α
and β control the signal-to-noise ratio (SNR) and the skywave-to-groundwave ratio (SGR)
of the system. The composite signal is then fed into a program block which simulates
the filtering effect of the front-end of the receiver, then input to the Skywave Detection
Algorithm under test which analyses it to determine the times of arrival of the skywave
components.
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Figure 1: Functional block diagram of the programs to simulate the different algorithms to detect
the skywaves under noisy conditions.

5.2 Simulation Results

A skywave delay estimation simulator has been developed to evaluate the performance of
the new ESPRIT algorithm and the results are compared with the IFFT spectral-division
method. Figure 2 shows typical results of the simulations when the signal consists of a
groundwave component at 100 µs followed by a skywave component 50 µs later and 12 dB
stronger, a typical night-time skywave condition. The SNR is equivalent to -13 dB at the
antenna input; this is 3 dB below the USCG minimum and corresponds to a simulation
signal SNR of 24 dB. With this set of parameters both algorithms produced satisfactory
results; the groundwave and skywave components of the signal are well separated and
easily identified. However, the resolution is better in the ESPRIT algorithm than with
the IFFT method.
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Figure 2: Groundwave and skywave components seperated by: (a) The ESPRIT algorithm, and
(b) The FFT spectral-division method. Skywave delay = 50 µs, SNR = -13 dB (at the receiver
input) and SGR = 12 dB.



To validate the result in Figure 2a, the estimates made by the ESPRIT algorithm
over 100 individual runs of the simulation were recorded. Figure 3 clearly shows that the
algorithm produce accurate results and good resolution.
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Figure 3: Skywave delay estimates made by ESPRIT algorithm. The Skywave delay = 50 µs,
SGR = 12 dB and SNR = -13 dB (at the receiver input).

The ESPRIT method has been further evaluated using off-air data collected by Of-
fermans. Figure 4 shows an example of data received at Delft (Netherlands) from the
Loran-C station at Sylt (Germany). Figures 5a and 5b show the results of analysing it
using the ESPRIT and IFFT algorithms, respectively. A skywave delay of 96 µs (ESPRIT)
and 100 µs (IFFT) is estimated. This is the first time Loran-C skywave delays have been
estimated using the ESPRIT algorithm.
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Figure 4: Off-air signals received at Delft (The Netherlands) from the Loran-C station at Sylt
(Germany).
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Figure 5: Groundwave and skywave components of the Off-air data separated by: (a) The
ESPRIT algorithm, and (b) The IFFT spectral-division method.



6 Conclusions

The ESPRIT high-resolution estimation technique, based on eigendecomposition analysis,
has been used to estimate the delays of the skywave components of Loran-C signals. The
technique has been shown to resolve closely-spaced groundwave and skywave components
of the signals and to provide good resolution. The paper has also demonstrated the
performance of the new technique for the first time using off-air signals. In future research
we will attempt to tune the algorithms to detect the exceptionally early skywave signals
at high latitudes that are currently of great interest.
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