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Abstract 
The U. S Coast Guard and Federal Aviation Administration are cooperating in a major effort to 
define and analyze the performance of a new Enhanced Loran system as a backup for GPS 
provided services.  Each transportation mode has defined requirements that the new Enhanced 
Loran must meet to be acceptable in the radionavigation mix of systems.  The USCG developed 
a set of requirements for Loran maritime navigation in terms of availability, accuracy, integrity 
and continuity for the Harbor Entrance and Approach (HEA) region. 
 
The USCG chaired Loran Accuracy Performance Panel (LORAPP) is spearheading the research 
and a proof-of-concept project into Loran meeting maritime navigation needs.  This paper 
examines Loran’s ability to meet HEA requirements.  The accuracy component is considered the 
greatest challenge for Enhanced Loran to overcome in the maritime environment.  The paper 
explores how the Loran system can correct for signal propagation variations by broadcasting 
differential corrections similar to the DGPS system.   
 
The differential corrected Loran, or dLoran, uses a 32-state Pulse Position Modulation scheme 
on one additional pulse in the Loran group.  The data pulse is used to broadcast a propagation 
correction to a nominal Additional Secondary Factor (ASF) value derived from multiple land-
base monitor sites.  A detailed analysis of the communication scheme is given as it relates to the 
data channel using the 100kHz sine wave Loran signal.  The ASF correction value is composed 
of a spatial and temporal component.  We examine the process to survey desired waterways 
creating a spatial grid for each transmitter station in view.  The waterway grid is correlated to a 
land-base monitor station that measures the temporal component.  In broadcasting the temporal 
variations, the shipboard receiver then moves the entire grid up/down to match the temporal 
correction.   
 
Introduction 
The Loran Integrity Performance Panel (LORIPP) and Loran Accuracy Performance Panel 
(LORAPP) both determined that the Enhanced Loran system requires a minimal form of 
augmentation to meet integrity and accuracy requirements.  The data rate for the augmentation is 
considerable less the data rate of the Interpulse Frequency Modulation (IFM) demonstrated in 
Alaska in the summer of 2001 [1].  The many discussions on the best way to transmit the 
augmentation data to the user led to the development of a new Loran 2003 Data Channel which 
uses an additional modulated (9th) pulse to the standard group of eight pulses.   The Loran 
evaluation team felt best to keep the augmentation within the Loran signal and keeps system 



complexity relatively low for each group of users.  It must be noted that any of the features for 
augmentation are not finalized or approved by the U. S. government.   
 
Aviation receivers would receive notification of the transmit station identification and time of 
transmission.  This data allows receivers to solve signal source identification and cross chain 
lane ambiguities necessary for all-in-view, master independent navigation.  Only the strongest 
signal needs to be demodulated to identify all received stations.   
 
Timing and maritime receivers do require the augmentation data in the form of Additional 
Secondary Factor (ASF) corrections to correct for temporal changes in propagation.  The 
corrections are offsets values from a published nominal list.  The offset vice absolute ASF 
corrections conserves bits while maintaining the dynamic range seen in past studies.  The offset 
values are measured at a monitoring base station.  Receivers would have a spatial grid in 
memory based on surveyed ASF data correlated to a monitoring base station.  The ASF 
correction system is still in a proof-of-concept stage and will be covered in future papers with 
respect its validity and monitor density. 
 
Loran 2003 Modulation Scheme 
The modulation scheme is a 32-state Pulse Position Modulation (PPM) resulting in 5 bits/pulse.  
The scheme adds one additional positive phased pulse a minimum of 1000 microseconds after 
standard group of eight pulses per Group Repetition Interval (GRI).  This means master stations 
would have a total of ten pulses per GRI and secondary stations would have nine pulses.  in 
legacy receivers, the additional pulse would average to zero, and the overall increase in cross-
rate interference would be 0.5 dB. 
 
The shift to PPM vice IFM adds many advantages to transmitter and receiver.  The transmitter 
does not required extensive changes to the output network.  The complexity of the control 
software is significantly reduced and can be done without major modifications to the current 
Timing and Frequency Equipment and Transmitter Control Console.  The receiver’s complexity 
is greatly reduced without the data wipe-off and other functions required by IFM.   
 
We needed more than minor phase changes to achieve the 32-states and five bits/pulse.  The 
phase changes give three bits/pulse.  In order to squeeze out the remaining two bits, the envelope 
is changed in position.  The modulation scheme moves the envelope three times creating a 4-
state envelope position and with 8-state phase changes gives the full 32-state PPM.  Figure 1 
illustrates the time domain view of the 32-state scheme.  The envelope states are separated by 
50.625 microseconds (Figure 2) to ensure the minimum distance between symbols is maintained 
at 0.766 relative to the presence of absence of a normal pulse (or equivalent to 1.25 usecs of 
phase). 
 



 
Figure 1:  Time Domain of 32-state PPM 
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Figure 2: Determination of minimum envelope delay between groups of 8 symbols 
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By using a combination of positive and negative phase pulse the envelope states needed only 
45.625 usecs to maintain the desired distance.  However, it is much easier to change the solid-
state transmitter to produce positive phased pulses than a combination of positive and negative.  
Additionally, the 1.25-usec timing changes were rounded to correspond with 5Mhz clock present 
in the current transmitter system.  Table 1 listed the final position of the 32 symbols with respect 
to symbol zero and Figure 3 shows the symbol space of the 32 symbols. 
 

symbol
present 
delay

delay w/5MHz 
clock symbol

present 
delay

delay w/5MHz 
clock

0 0 0 16 101.25 101.2
1 1.25 1.2 17 102.5 102.6
2 2.5 2.6 18 103.75 103.8
3 3.75 3.8 19 105 105
4 5 5 20 106.25 106.2
5 6.25 6.2 21 107.5 107.6
6 7.5 7.6 22 108.75 108.8
7 8.75 8.8 23 110 110
8 50.625 50.6 24 151.875 151.8
9 51.875 51.8 25 153.125 153.2

10 53.125 53.2 26 154.375 154.4
11 54.375 54.4 27 155.625 155.6
12 55.625 55.6 28 156.875 156.8
13 56.875 56.8 29 158.125 158.2
14 58.125 58.2 30 159.375 159.4
15 59.375 59.4 31 160.625 160.6  

Table 1:  Symbols time delay with respect to Symbol 0 
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Figure 3:  Symbol Space view of 32-state PPM 

 
Augmentation Message 
For the purpose of proof-of-concept testing, the message length is limited to a 24 GRI format.  
This gives a maximum message length of 2.38 seconds based on the current United States Loran 
rates.  The panels’ desired to limit the message length minimizes the receiver’s time to alarm for 
integrity purposes.   
 
Time to first fix will vary among the different users groups.  The maritime differential (ASF 
corrections) receiver requires corrections for multiple stations.  Assuming Time-of-transmission 
is operational, a receiver needs one correction per Loran station vice 2 corrections in System 
Area Monitoring control.  Each monitor would have six corrections that would be divided 
between 3 messages per site (2 corrections per message).  Assuming each Loran station transmits 
differential data from a maximum of 15 to 25 base stations (45 to 75 ASF correction messages), 
a dual rated station would have update/time to first fix of one to one and one half minutes.  The 
time doubles for single rated stations (Lorsta’s Jupiter and Middletown are the only signal rated 
stations with significant potential for maritime base stations).  Intertwined with the ASF 
corrections would be aviation integrity message and timing messages.  Integrity warning or ASF 
monitoring station “don’t use” message would be transmitted as needed and have priority over 
all over messages. 
 
The actual format and bit assignment has not been completed for every message type.  We 
developed a proposed ASF correction and absolute time message format for testing (Table 2). 
 

Time # bits Resolution Range
MSG type 4 16

Time 31 1 msg epoch 97-163 yrs
Leap Secs 6 64

Next leap Sec 1
sta ID 3 8
Total 45

dLoran # bits Resolution Range
MSG type 4 16

Time Base Quality 3
Ref ID 10 1024
Sig ID 3 2 16

Corr # 1 10 2ns +/- 1.022 usec
Corr # 2 10 2ns +/- 1.022 usec

Age/Quality 5
Total 45  

Table 2:  Message formats 

 
An aviation integrity warning for the presence of early skywave is being considered by the 
LORIPP.  It would warn the user not to use a signal if geomagnetic latitude of midpoint of 



propagation exceeds a specified number of degrees and either signal strength drops lower than a 
dB threshold or transmission path is greater than some distance [2]. 
 
Reed-Solomon Codes 
In the LORAN 2003 Data Channel application, coding plays three roles: (1) to provide error 
correction capability for the transmission recognizing that the channel includes noise, cross rate 
interference, and blanking, and (2) to provide integrity information that the decoded data is valid 
with high probability. In addition it is necessary to synchronize on the message epoch. While it is 
possible to provide these features in different ways (e.g. forward error correction for the channel 
interference, CRC codes for integrity, and separate synchronization sequences or symbols), the 
LORAN 2003 Data Channel system employs a single Reed-Solomon code to accomplish all 
three. Below these issues are described in some detail. (While the discussion below focuses on 
using an errors-only RS decoder, we note that all of the development and results directly extends 
to errors-and-erasures decoding.) We begin with a brief review of Reed-Solomon codes.  
 
Reed-Solomon (RS) coding is a well-known forward error correction coding method that 
efficiently protects data from unknown and potentially bursty channel disturbances (see e.g. [3] 
for an in-depth coverage of these codes). RS codes are non-binary codes; the number of symbols 
in the code alphabet, q, is either a prime or a power of a prime. In most applications q is a power 
of 2, q = 2b, so that each symbol corresponds to b bits. For the LORAN 2003 system with 9th 
pulse modulation b = 5, so that q equals 25 = 32 and each codeword symbol takes on one of 32 
values (typically written as 0, 1, 2, … 31). RS codes consist of n = q – 1 such q-ary symbols in 
sequence of which k are data symbols and n – k are parity check symbols; the resulting code is 
called an (n,k) code. RS codes can be shortened by setting some of the information symbols to 
zero and not transmitting them; this effectively reduces both n and k. For example, in the 
LORAN 2003 system, the original RS code has parameters n = 31 and k = 16; setting 7 of the 
symbols to zero results in a (24,9) code. 
 
The encoding and decoding processes for RS codes are usually described using polynomials on 
finite fields; the details of the method are beyond the scope of this presentation. However, we 
can provide an example. In LORAN 2003 the 45-bit message string (commas added for visual 
convenience) 

01100,01001,01001,10101,10111,01101,10010,00110,00100 
 

becomes the symbol sequence  m = [12,9,9,21,23,13,18,6,4]. Appending seven zeroes to this 
message (to form the 16 symbols expected by the RS encoder), the 15 parity symbols computed 
by the RS encoding algorithm are p = [0,7,7,31,13,6,15,6,10,19,16,11,11,12,27]; hence, the full 
RS codeword is the concatenation of m, the seven zeroes, and p 
 

c31 = [12,9,9,21,23,13,18,6,4,0,0,0,0,0,0,0,0,7,7,31,13,6,15,6,10,19,16,11,11,12,27] 
 

and the shortened RS (24,9) codeword c is just m and p  
 

c24 = [12,9,9,21,23,13,18,6,4,0,7,7,31,13,6,15,6,10,19,16,11,11,12,27] 
 



We note that that full RS codes are cyclic; in other words, a cyclic shift (to left or right with wrap 
around) of an RS codewords’ symbols results in another valid RS codeword.  In general, 
shortened RS codes are not cyclic; however, they can be close to cyclic. For the specific example 
above, a rotation of c24 to the left by one unit  
 

[9,9,21,23,13,18,6,4,0,0,0,0,0,0,0,0,7,7,31,13,6,15,6,10,19,16,11,11,12,27,12] 
 

results in another valid RS codeword. (We note that this example worked because the first 
symbol in the parity portion of the codeword was zero; typically, if the message portion ends in 
zeros or the parity portion starts with zeros, the cyclic property holds for certain shifts of the 
shortened codeword.) This closeness to a cyclic code is an issue when synchronization of the 
data transmission is unknown; we address this further below. 
 
The decoding algorithm for Reed-Solomon codes is called a bounded distance decoder in that 
not all received symbol sequences are transformed back into a valid codeword; only those 
received sequences within a fixed distance of a valid codeword are decoded, all others result in a 
failure of the decoder. Figure 3 shows a portion of the receiver’s observation space (the set of all 
channel outputs, as sequences of symbols) to depict this concept: the asterisks (one per circle) 
correspond to the actual RS codewords, the dots are all other possible received sequences, and 
the circles enclose those sets of the received sequences mapped to the enclosed codeword. Note 
that the decodable sets are disjoint and each contains a single codeword. The set of received 
sequences for each circle are those sequences within a fixed Hamming distance of the 
corresponding codeword (Hamming distance is defined as the number of symbol differences 
between two sequences and takes on integer values between zero and the number of symbols in a 
codeword). Imagining that the transmitted codeword is the one in the yellow filled circle, the 
decoder correctly decodes this codeword if the received sequence is also within the yellow circle 
(fortunately, this occurs with high probability). If the received sequence is within some other 
circle (shown in orange) the decoder releases the incorrect codeword corresponding to that circle, 
making an error. Finally, if the received sequence is not within any of the circles, i.e. in the gray 
region, the decoder reports a failure.  
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Figure 4:  Representation of the decoder's operation. 



 
Error Correction Performance 
Since the valid codewords in an RS code are distributed as far apart as possible in the 
observation space, there are many error conditions that the decoder can correct. Specifically, the 
minimum spacing (equivalently the number of symbol differences or Hamming distance) 
between RS codewords is equal to n – k. Since the decoder looks to the closest codeword, the 
channel must corrupt at least one-half, ⎣ ⎦2/)( kn − , of these symbols (and in the right ways) to 
cause some other codeword to be closer to the received sequence than the original codeword. In 
the representation of the decoder in Figure 1, the radius of the circles about each codeword 
equals ⎣ ⎦2/)( knt −≤  in Hamming distance. For the LORAN 2003 system, n – k = 15 so the 
code can correct up to 7 errors; however by limiting the number of corrections to some smaller 
number (e.g. t = 6) we can improve the synchronization and integrity performance of the system 
(described below). The overall probability of not getting the codeword correct (the sum of the 
probabilities of an incorrect decoding and of a decoder failure), equivalently the probability of 
not falling within the yellow circle, can be computed as  

 
 
 

 
in which p is the symbol error probability of the channel. For the LORAN 2003 code (with n = 
24 and t = 6), Figure 4 shows this probability versus p. We note that as long as the symbol error 
rate is low (less than 1% bad symbols or p ≤ 0.01), the resulting combined error and failure 
probability is very, very low.  
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Figure 5:  RS (24,9) code performance with t = 6. 

 
Integrity 
The performance curve shown in Figure 4 is the sum of the probability of incorrect decoding (the 
received sequence falling in one of the orange circles in Figure 1) plus the probability of a 
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decoder failure (the received sequence falling within the gray region in Figure 3). From an 
integrity perspective, incorrect decodings are to be avoided since they signify erroneous data 
being released from the receiver. To demonstrate the integrity level of the LORAN 2003 RS 
code, we evaluate below the probability of an incorrect decoding (a so called undetected error) 
in two ways: based on randomly received data and conditioned on specific error events: 
 

• Random received data: Systems concerned with error detection commonly employ binary 
CRC (cyclic redundancy check) codes. Often the model in such a case is that a system 
fault or the effects of channel errors are manifested in total corruption of the received 
data. The performance, then, is computed by assuming that the received bits are arbitrary 
(a probability of ½ for each bit value so that all binary sequences are equally likely) and 
the undetected error probability of the code equals the ratio of the number of bit patterns 
that pass the CRC parity check to the total number of bit patterns. For a CRC code with k 
information bits and r parity bit, this is   

 
 
 

For example, a CRC code with r = 24 parity bits yields integrity performance of 2-24 or 
approximately 10–7.  
 
We can employ a similar analysis for the RS codes in terms of random data. The 
difference is that we must count the total number of decodable sequences, those within t 
units in Hamming distance of a valid codeword, toward the undetected error event. The 
resulting expression is  

 
 
 
 

in which the numerator is the product of the number of valid, but incorrect, codewords 
(qk– l) times the number of correctable patterns per codeword (the sum is there since we 
can have up to t errors; the combinatorial terms recognizes that the t errors can be 
distributed anywhere among the n codeword positions, and the (q – 1) j term is due to the 
fact that the value of each symbol in error can be any of the remaining q – 1 values) and 
the denominator is the total number of received sequences. For the LORAN 2003 code, 
substituting n = 24, q = 32, and t = 6 yields Prob(undetected error) = 3.2 x 10–9.  
 

• Specific error events: For a better evaluation of error detection we examine classes of 
error events individually, computing the three relevant probabilities: that the released 
codeword is correct (PC), that the released codeword is an undetected error (PUE), and that 
there is a decoder failure (PF). We note that these three sum to unity. To describe separate 
cases, let u represent the number of symbol errors generated by the channel for a 
particular set of received data, nu ≤≤0 . Since for an RS (n,k) code the minimum 
distance is dmin = n – k + 1 and the bounded distance decoder can correct up to t errors 
( 2/)( knt −≤ ), we condition the problem on the number of channel errors, u, and 
compute the relevant probabilities conditioned on this count, PC(u), PUE(u) and PF(u). 
Several results are simple to see:  
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o For tu ≤≤0 , we have PC(u) = 1, PUE(u) = 0, and PF(u) = 0 since the decoder is t error 
correcting. 

o For tdut −<< min , we have PC(u) = 0, PUE(u) = 0, and PF(u) = 1 since the data is too 
far from the correct codeword to be released, but also not close enough to any other 
codeword to generate an error. 

o For tdu −≥ min , we have PC(u) = 0 and compute PUE(u) recognizing that  PF(u) =  1 – 
PUE(u).  

Computation of PUE(u) is similar to some of the arguments above. Specifically, if we 
assume that the u errors are randomly distributed over the n symbol positions, then the 
error probability is equal to the ratio of how many such sequences are decodable to the 
total number of such sequences. Using results in [Daraiseh] the result is  
Substituting the LORAN 2003 code parameters yields the results shown in the Table 3 
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re 6. In summary, for any number of channel errors the level of integrity of the Reed-
Solomon message is very high.  
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Figure 6:  Correctable Erasure/Errors versus Probability of Error 

 
 

Error count u PUE(u) PF(u) 
0,1,2,3,4,5,6 0 0 

7,8,9 0 1 
10 1.1 × 10-10 1 – PUE(10) 
11 5.5 × 10-10 1 – PUE(11) 
12 1.4 × 10-9 1 – PUE(12) 
13 2.3 × 10-9 1 – PUE(13) 
14 3.0 × 10-9 1 – PUE(14) 
15 3.2 × 10-9 1 – PUE(15) 
16 3.2 × 10-9 1 – PUE(16) 
17 3.2 × 10-9 1 – PUE(17) 
18 3.2 × 10-9 1 – PUE(18) 
19 3.2 × 10-9 1 – PUE(19) 
20 3.2 × 10-9 1 – PUE(20) 
21 3.2 × 10-9 1 – PUE(21) 
22 3.2 × 10-9 1 – PUE(22) 
23 3.2 × 10-9 1 – PUE(23) 



24 3.2 × 10-9 1 – PUE(24) 
Table 3:  Integrity performance of the (24,9) RS Code. 

 
Synchronization 
Synchronization in a communications system recognizes the fact that the transmitter will be 
sending sequences of encoded messages, one after the other, and that the receiver must know 
how to parse the received symbols into individual blocks of message symbols. This situation is 
depicted in Figure 3 which shows three distinct 24-symbol transmitted codewords and the 
receiver’s view of the symbol stream; in this case, off by two symbols.  To be able to 
synchronize the receiver with the transmitter, we need some way to decide that a particular 
parsing of the symbols is not correct. While this could be accomplished through the occasional 
transmission of fixed symbol sequences (so called synchronizing sequences which reduce the 
data rate), our preference is to use the features of the RS code itself. The idea is that if we 
modeled incorrect parsing of the received symbols as sending random sequences of symbols to 
the RS decoder, then the analysis of integrity for random data presented above suggests that only 
with low probability will an incorrectly parsed message be decodable. In other words, for a 
synchronization error, the RS decoder would typically fail to decode unless the transmitter and 
receiver frames matched. Further, the probability of multiple symbols in an incorrectly parsed 
data stream all being decodable is much smaller and the decoder could adjust its framing until 
multiple messages are decodable.  
 

c1,1 c1,2 c1,3        ...... c1,24 c2,1 c2,2 c2,3        ...... c2,24 c3,1 c3,2 c3,3        ...... c3,24

transmitter framing

receiver framing
with an offset  

Figure 3 – Synchronization for the transmitter and receiver. 
 
Unfortunately, the near cyclic nature of shortened RS codes makes the model of random data a 
weak fit to reality. For example, it was noted above in the description of RS codes that a cyclic 
shift (to the left by one unit) of the shortened codeword  
 

c24 = [12,9,9,21,23,13,18,6,4,0,7,7,31,13,6,15,6,10,19,16,11,11,12,27] 
to  

[9,9,21,23,13,18,6,4,0,7,7,31,13,6,15,6,10,19,16,11,11,12,27,12] 
 

also resulted in a codeword. While cyclic shifts are different than synchronization errors in that 
symbols are not circulated, if the message following c24 starts with symbol 12 then 
synchronization is in question since both sets of receiver framing yield valid codewords. Further 
compounding this effect is the error correction capability of the decoder. For example, imagine 
that the example codeword c24 is followed in its transmission by arbitrary symbols s1 and s2 so 
that the channel output is  
 



[12,9,9,21,23,13,18,6,4,0,7,7,31,13,6,15,6,10,19,16,11,11,12,27,s1,s2] 
 

With a single offset, the receiver frames the 24 symbols  
 

[9,9,21,23,13,18,6,4,0,7,7,31,13,6,15,6,10,19,16,11,11,12,27,s1] 
 

and passes them to the decoder. In this case, the RS decoder corrects the single error in the last 
position, replacing s1 by 12 and releases an incorrect data set. Similarly, with a two symbol 
offset, the receiver frames  
 

[9,21,23,13,18,6,4,0,7,7,31,13,6,15,6,10,19,16,11,11,12,27,s1,s2] 
 

for the decoder. In this case, 3 or 4 errors are “corrected”, but the result is still an error since the 
symbols are not synchronized.  
 
The primary problem with the examples above is the near cyclic nature of the code, which is 
preserved (with the error correction capability of the bounded distance decoder) by small 
synchronization errors. To solve the synchronization problem we need to cause synchronization 
errors to disrupt the cyclic nature of the shortened codewords.  
 
The communications literature initially addressed the synchronization issue for perfect channels 
(i.e. no symbol errors, just synchronization issues) [Stiffler]. In such a case it is possible to show 
that detection of the lack of synchronization is achievable for all offsets if the code’s data rate 
(k/n) is less than one-half. The solution is to employ a coset code in which the original code is 
modified by adding (modulo q) a fixed vector c* to each codeword. (Note that c* itself cannot be 
a codeword as that would not modify the code, just permute the codeword to information 
symbols assignment.) Coset codes employ the same decoding algorithm as the original code (just 
first subtract out c*, again modulo q, before decoding) and have the same error and integrity 
performance.  
 
The synchronization of coset codes with error correction has received much less attention in the 
literature. For example, it is unclear if there exists a coset vector c that guarantees 
synchronization detection for all offsets given that the decoder employs error correction. 
However, we have had good success with simple coset vectors such as  
 

c* = [ 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 ] 
 
 
Transmission Tests 
A prototype control software program for the tube-type transmitter (TTX) is finished (too many 
times due to several changes in message format) that includes the PPM scheme, Reed-Solomon 
encoder and proposed message formats.  We are currently working on modifying the TFE 
software to transmit the PPM scheme on the solid-state transmitter. 
 
Two prototype user receivers have been development focusing on maritime receivers.  The first 
is a communication receiver only that demodulates and decodes the ASF correction message.  



The second is full maritime differential Loran receiver that computes a corrected Loran-C fix 
that is output via a NIMA string. 
 
A transmission test of the entire communication aspect of the system was conducted on 
September 30th, 2003.  Using LSU’s TTX, we transmitted message to Waterford, CT to the 
prototype communication receiver with an e-field antenna.  There was no CRI canceling and 
decoder corrected for errors only.  Figure 6 shows the results of the test.  It should be noted that 
at 1046 the transmitter was temporarily turned off. 
 

 
Figure 7:  Transmission Test Results 

 
The top graph displays the received signal strength of LSU compared with the 3 other strongest 
signals.  The second graph is number of errors per message (RS code can correct up to six 
errors).  The bottom graph is the percentage of messages lost per block of ten messages.   
 
Only Lorsta Nantucket had stronger signal strength than LSU when transmitting full power.  
Even as the second strongest signal, the message errors where well below the capability of the 
RS decoder and no message where lost.  As the power of LSU signal was decreased, the errors 
per message increase, but no messages are lost until LSU signal strength drops below that of 3 
other stations.  Note that the smallest cross rate pulse that can cause an error is –7 dB in relative 
strength. 
 
Differential Loran Survey Example 
 
We are very early in the process of collecting survey data and evaluating the potential accuracy 
of differential Loran.  Figures 8 to 13 illustrate some of the early data.  Figure 8 shows the path 



of the U. S. Army Corps of Engineers Motor Vessel Shuman during a time when they were 
conducting a depth survey.  Ground truth is established using DGPS.  Figure 9 is a scatter plot 
showing the accuracy of Loran during this period.  Figure 10 illustrates how the delay between 
DGPS and Loran is estimated.  The delay is varied in small increments, the accuracy evaluated at 
each value of delay, and it is assumed the best estimate of delay is that which minimizes error.    
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Figure 8:  Path of Shuman during depth survey 
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Figure 9:  Scatter plot of fix errors 
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Figure 10:  LRSIIID Accuracy vs. Estimated Delay 

 
Figures 11 to 13 illustrate a comparison of the performance of a crossed magnetic (H) field loop 
antenna to that of an electric (E) field antenna.  The Shuman was requested to execute a slow 
turn.  The path of that turn is illustrated in figure 11.  Figure 12 compares predicted to observed 
ASFs’s for the 9960Z Time Difference (TD) for both the magnetic loop and the electric field 



antennas and figure 13 compares the accuracy of the positions obtained using the data from the 
two antennas.  At this point, the E field antenna clearly outperforms an uncompensated H field 
antenna.  Parallel efforts are underway to design and manufacture H field antennas where this 
directional bias has been greatly diminished and/or to calibrate and compensate for this bias.   
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Figure 11:  Test of directional dependence of H field antenna 
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Figure 12:  TOA Measurements during H-field directional dependence test 
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Figure 13:  Comparison of E & H field accuracy during turns 

 
Conclusions 
The methods of generating, coding and decoding, modulating and demodulating, and using 
differential Loran ASF corrections has been demonstrated and presented.  Although very early in 
the data analysis stage, these early results suggest that meeting the HEA accuracy requirement 
should be possible.  Early results have shown the E field antenna clearly outperforms an 



uncompensated H field antenna, but efforts are underway to design and manufacture H field 
antennas where this directional bias has been greatly diminished and/or to calibrate and 
compensate for this bias.   
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