

Error Mechanisms in Indoor Positioning Systems without Support from GNSS

W. R. Michalson Abhijit Navalekar Hemish Parikh

10/27/08

Center for Advanced Integrated Radio Navigation (CAIRN) ECE-WPI, Worcester, MA

- Introduction
- Signal Structure
- **RF Prototype**
- NLOS Positioning Test Setup
- **NLOS Positioning Test Results**
- Error Sources
- Conclusion

Introduction

Personal Location and Navigation System

The emergency vehicles and personnel carry an ad-hoc transceiver device

The signals received on the receivers installed on the vehicles are used to calculate the relative position of the fire fighters in and around the building

The location of the fire fighter is displayed at a command and control display

Signal Structure MC-UWB

MC-UWB Signal:

$$S_{c}(t) = \sum_{m=0}^{M-1} A_{c} e^{2\pi j (f_{o} + m\Delta f)t + \phi_{m}}$$

MC-UWB advantages:

Robust in fading environment
 Improved spectral efficiency
 High data rate
 Simple signal generation

RF Prototype

Custom MC-UWB RF Prototype Design Required

RF Prototype - Transmitter

SSB Transmitter Output Frequency Range 550MHz – 698MHz (BW: 148MHz) Fractional Bandwidth: 24%

RF Prototype - Transmitter

Transmitter Output = -10dBm/SC

RF Prototype - Transmitter

RF Prototype - Receiver

Direct Downconversion Receiver Architecture

System rarameter	Acmeveu
System G (dB)	50
System NF (dB)	4.5
System IIP3 (dBm)	-19
Rx. Sensitivity (dBm)	-87
Rx. SFDR (dB)	45.3

RF Prototype - Receiver

Direct Downconversion Receiver Output Frequency Range 30MHz – 178MHz (BW: 148MHz) Fractional Bandwidth: 24%

NLOS Positioning Test Setup

148MHz RF System Transmitter Output

148MHz RF System Receiver Output

NLOS Positioning Test Setup

Test Setup:

20mx20m brick building
1 Transmitter inside
16 Receiving antennas outside, covering 3 sides

NLOS Positioning Test Results

Test Results:

Min Error: 0.22m
Max Error: 6.6m
Mean Error: 2.84m

NLOS Positioning Error Sources

NLOS Positioning Error Sources

Error Source	Error (meter)
Sampling CLK Shift	0.003
Sampling CLKDrift	0.003
Local Oscillator Shift	0.010
Local Oscillator Drift	0.010
Receiver Geometry	0.30
Antenna Type	0.30
Software Processing	0.10
Path Loss / Shadow Fading	0.10
Narrowband Interference	0.30
NLOS	0.50
Multipath	0.50
Building Dielectric Properties	???
Total RSS Error	???

Design Constraints / Comments
< 10 ppm: Sampling CLK frequency error
< 10 ppm: Sampling CLK frequency error
< 2.5 ppm: Local oscillator frequency error
< 2.5 ppm: Local oscillator frequency error
Optimum receiver geometry very important
Need to use directional antennas at receivers
Optimum selection of the useful spectrum
AGC implementation at the transmitter and receiver
Optimum selection of the useful spectrum
Better geometry, antenna, transmit power required
Need for channel models specific to indoor positioning
Characterize delays induced by various building materials

NLOS Positioning Error Sources

No Multipath, Effect of Dielectric Properties Only

NLOS Positioning Error Sources

Total Wall Thickness vs. Total Signal Delay / Total Error

21

NLOS Positioning Error Sources

Error Source	Error (meter)
Sampling CLK Shift	0.003
Sampling CLKDrift	0.003
Local Oscillator Shift	0.010
Local Oscillator Drift	0.010
Receiver Geometry	0.30
Antenna Type	0.30
Software Processing	0.10
Path Loss / Shadow Fading	0.10
Narrowband Interference	0.30
NLOS	0.50
Multipath	0.50
Building Dielectric Properties	> 0.5
Total RSS Error	> 2.626

Design Constraints / Comments < 10 ppm: Sampling CLK frequency error < 10 ppm: Sampling CLK frequency error < 2.5 ppm: Local oscillator frequency error < 2.5 ppm: Local oscillator frequency error Optimum receiver geometryVery important Need to use directional antennas at receivers Optimum selection of the useful spectrum AGC implementation at the transmitter and receiver Optimum selection of the useful spectrum Better geometry, antenna,transmit power required Need for channel modelsspecific to indoor positioning Characterize delays induced by various building materials

NLOS Positioning Error

Conclusion

- Dielectric properties of the building materials add to the positioning error.

- The indoor environment typically has more than two walls and this could lead to indoor positioning errors of the order of 2 to 3m.

- This not so well characterized source of error needs to be considered independently in indoor positioning systems

- There is a need to calibrate the positioning system thus minimizing the errors due to building dielectric material properties

Center for Advanced Integrated Radio Navigation

