RTS/CTS mechanism with 802.11 for indoor location

J. Prieto¹, A. Bahillo¹, S. Mazuelas¹, J. Blas¹, P. Fernández², and R. M. Lorenzo²

¹CEDETEL (Center for the Development of Telecommunications). Parque Tecnológico de Boecillo (Valladolid). Spain Email: jprieto@cedetel.es
²Department of Signal Theory and Communications and Telematic Engineering University of Valladolid. Spain Email: patfer@tel.uva.es

NAV08/ILA37 October 2008

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶ ◆ ● ▼

Outline

Location approach TOA Estimation Assessment of the system Summary

Outline

- Location approach
 - Wireless cellular location techniques
- 2 TOA Estimation
 - RTT measuring
 - Hardware design
- 3 Assessment of the system
 - Experimental Setup
 - RTT Measurements
 - Distance Estimation
 - Indoor Location

④ Summary

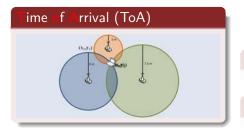
• Conclusions and future work

· 글 · · 글 · 크 님

Wireless cellular location techniques

Outline

- Location approach
 - Wireless cellular location techniques
- 2 TOA Estimation
 - RTT measuring
 - Hardware design
- 3 Assessment of the system
 - Experimental Setup
 - RTT Measurements
 - Distance Estimation
 - Indoor Location


Summary

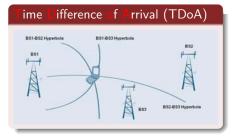
• Conclusions and future work

(四) (日) (日) (日)

Wireless cellular location techniques

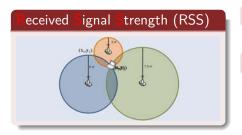
Fime Difference of Arrival (TDoA)

Angle of Arrival (AoA)


Received Signal Strength (RSS)

Wireless cellular location techniques

Received Signal Strength (RSS)



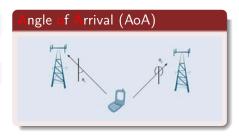
Angle of Arrival (AoA)

Wireless cellular location techniques

Time of Arrival (ToA)

Time Difference of Arrival (TDoA)

Angle of Arrival (AoA)



Wireless cellular location techniques

Time Difference of Arrival (TDoA)

Time of Arrival (ToA)

Received Signal Strength (RSS)

RTT measuring Hardware design

Outline

- Location approach
 - Wireless cellular location techniques
- 2 TOA Estimation
 - RTT measuring
 - Hardware design
- 3 Assessment of the system
 - Experimental Setup
 - RTT Measurements
 - Distance Estimation
 - Indoor Location

Summary

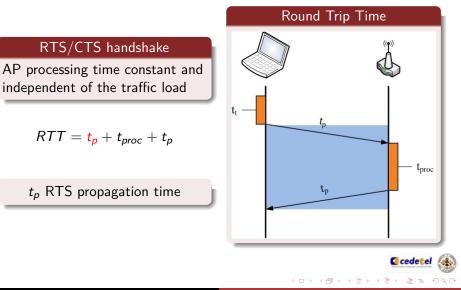
• Conclusions and future work

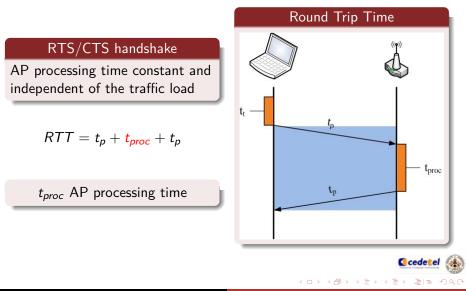
RTT measuring Hardware design

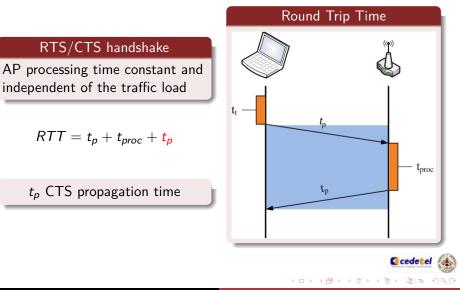
RTS/CTS handshake

AP processing time constant and independent of the traffic load

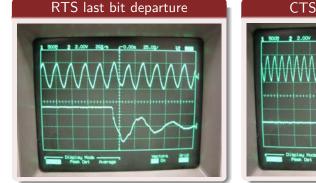
 $RTT = t_p + t_{proc} + t_p$


RTT measuring Hardware design


RTS/CTS handshake


AP processing time constant and independent of the traffic load

 $RTT = t_p + t_{proc} + t_p$



RTT measuring Hardware design

RTS last bit departure 2.00 252/8 -0.008 25.09/ 12 and make a familie a Display Hode Average Vectors 6716

CTS first bit arrival

RTT measuring Hardware design

Outline

- Location approach
 - Wireless cellular location techniques
- 2 TOA Estimation
 - RTT measuring
 - Hardware design
- 3 Assessment of the system
 - Experimental Setup
 - RTT Measurements
 - Distance Estimation
 - Indoor Location

Summary

• Conclusions and future work

RTT measuring Hardware design

Hardware design

Objectives

- In the synchronization In the synchronization
- Improve PC clock resolution
- System independence
- Minimize hardware size
- Skeep the voltage constant and noise-free
- O Automation

Solutions

- RTT measurements
- ② External measuring system
- 3 RADAR location model
- Multi-layer PCB
- Copper planes & bypass capacitors
- Oevice-system interaction

RTT measuring Hardware design

Hardware design

Objectives

No need of synchronization

- Improve PC clock resolution
- System independence
- Minimize hardware size
- Skeep the voltage constant and noise-free
- O Automation

Solutions

- RTT measurements
- ② External measuring system
- 3 RADAR location model
- Multi-layer PCB
- Copper planes & bypass capacitors
- Oevice-system interaction

RTT measuring Hardware design

Hardware design

Objectives

No need of synchronization

- Improve PC clock resolution
- System independence
- Minimize hardware size
- Skeep the voltage constant and noise-free
- 6 Automation

Solutions

- RTT measurements
- 2 External measuring system
- 3 RADAR location model
- Multi-layer PCB
- Copper planes & bypass capacitors
- Oevice-system interaction

RTT measuring Hardware design

Hardware design

Objectives

- No need of synchronization
- Improve PC clock resolution
- System independence
- Minimize hardware size
- Skeep the voltage constant and noise-free
- 6 Automation

Solutions

- RTT measurements
- ② External measuring system
- 3 RADAR location model
- Multi-layer PCB
- Copper planes & bypass capacitors
- Oevice-system interaction

RTT measuring Hardware design

Hardware design

Objectives

- No need of synchronization
- Improve PC clock resolution
- System independence
- Minimize hardware size
- Skeep the voltage constant and noise-free
- 6 Automation

Solutions

- RTT measurements
- 2 External measuring system
- 3 RADAR location model
- Multi-layer PCB
- Copper planes & bypass capacitors
- Oevice-system interaction

RTT measuring Hardware design

Hardware design

Objectives

- No need of synchronization
- Improve PC clock resolution
- System independence
- Minimize hardware size
- Skeep the voltage constant and noise-free
- 6 Automation

Solutions

- RTT measurements
- 2 External measuring system
- 3 RADAR location model
- Multi-layer PCB
- Copper planes & bypass capacitors
- Oevice-system interaction

RTT measuring Hardware design

Hardware design

Objectives

- No need of synchronization
- Improve PC clock resolution
- System independence
- Minimize hardware size
- Skeep the voltage constant and noise-free
- O Automation

Solutions

- RTT measurements
- 2 External measuring system
- 8 RADAR location model
- Multi-layer PCB
- Copper planes & bypass capacitors
- Device-system interaction

RTT measuring Hardware design

Hardware design

Objectives

- No need of synchronization
- Improve PC clock resolution
- System independence
- O Minimize hardware size
- Skeep the voltage constant and noise-free
- 6 Automation

Solutions

- RTT measurements
- 2 External measuring system
- 8 RADAR location model
- Multi-layer PCB
- Copper planes & bypass capacitors
- Device-system interaction

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ ヨヨ わらの

RTT measuring Hardware design

Hardware design

Objectives

- No need of synchronization
- Improve PC clock resolution
- System independence
- O Minimize hardware size
- Skeep the voltage constant and noise-free
- 6 Automation

Solutions

- RTT measurements
- 2 External measuring system
- 8 RADAR location model
- Multi-layer PCB
- Copper planes & bypass capacitors
- Device-system interaction

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ ヨヨ わらの

RTT measuring Hardware design

Hardware design

Objectives

- No need of synchronization
- Improve PC clock resolution
- System independence
- O Minimize hardware size
- Keep the voltage constant and noise-free
 - Automation

Solutions

- RTT measurements
- 2 External measuring system
- 8 RADAR location model
- Multi-layer PCB
- Copper planes & bypass capacitors
- Device-system interaction

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ ヨヨ わらの

RTT measuring Hardware design

Hardware design

Objectives

- No need of synchronization
- Improve PC clock resolution
- System independence
- O Minimize hardware size
- Skeep the voltage constant and noise-free
 - Automation

Solutions

- RTT measurements
- External measuring system
- 8 RADAR location model
- Multi-layer PCB
- Copper planes & bypass capacitors
- Device-system interaction

RTT measuring Hardware design

Hardware design

Objectives

- No need of synchronization
- Improve PC clock resolution
- System independence
- O Minimize hardware size
- Skeep the voltage constant and noise-free
- O Automation

Solutions

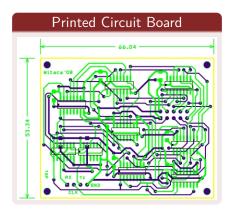
- RTT measurements
- External measuring system
- 8 RADAR location model
- Multi-layer PCB
- Copper planes & bypass capacitors
 - Device-system interaction

(1日) (日) (日) (日) (日)

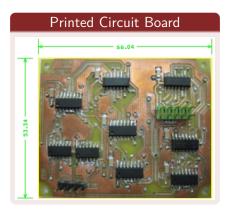
RTT measuring Hardware design

Hardware design

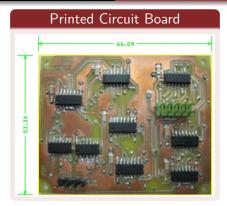
Objectives

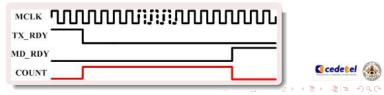

- No need of synchronization
- Improve PC clock resolution
- System independence
- O Minimize hardware size
- Skeep the voltage constant and noise-free
- O Automation

Solutions


- RTT measurements
- External measuring system
- 8 RADAR location model
- Multi-layer PCB
- Copper planes & bypass capacitors
- Oevice-system interaction

(古) 문 ((日) (日) (日) (日)





RTT measuring Hardware design

jprieto@cedetel.es RTS/CTS mechanism with 802.11 for indoor location

Experimental Setup RTT Measurements Distance Estimation Indoor Location

Outline

- Location approach
 - Wireless cellular location techniques
- 2 TOA Estimation
 - RTT measuring
 - Hardware design
- 3 Assessment of the system
 - Experimental Setup
 - RTT Measurements
 - Distance Estimation
 - Indoor Location

Summary

• Conclusions and future work

(日) (局) (日) (日) (日)

Experimental Setup RTT Measurements Distance Estimation Indoor Location

Higher Technical School of Telecommunications Engineering

	Three scenarios
LOS ₁	
NLOS	
LOS ₂	

Outline TOA Estimation Assessment of the system

Experimental Setup

Higher Technical School of Telecommunications Engineering

Three scenarios		
 LOS₁ 		
NLOS		
LOS ₂		

Samples carried out along a corridor of the School

Analysis of the distribution of LOS measurements

< (1) >

Experimental Setup RTT Measurements Distance Estimation Indoor Location

Higher Technical School of Telecommunications Engineering

	Three scenarios
LOS ₁	
NLOS	
LOS ₂	

Same scenario with a wall 20 cm width next to the AP

Analysis of the distribution of NLOS measurements

Experimental Setup RTT Measurements Distance Estimation Indoor Location

Higher Technical School of Telecommunications Engineering

	Three scenarios
LOS ₁	
NLOS	
• LOS ₂	

Samples carried out outside of the School

Linear regression for estimating distances

Experimental Setup RTT Measurements Distance Estimation ndoor Location

Outline

- Location approach
 - Wireless cellular location techniques
- 2 TOA Estimation
 - RTT measuring
 - Hardware design
- 3 Assessment of the system
 - Experimental Setup
 - RTT Measurements
 - Distance Estimation
 - Indoor Location

Summary

• Conclusions and future work

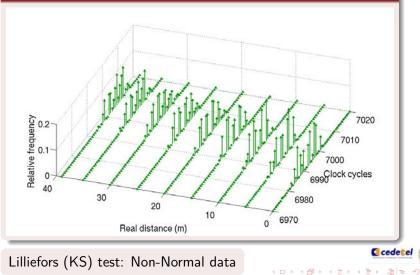
(日) (局) (日) (日) (日)

Experimental Setup RTT Measurements Distance Estimation ndoor Location

LOS₁

Augustic formed and the second second

Lilliefors (KS) test: Non-Normal data


jprieto@cedetel.es RTS/CTS mechanism with 802.11 for indoor location

<ロ> <部> <部> < 2 > < 2 > < 2 > < 2 = 1

Outline TOA Estimation Assessment of the system

RTT Measurements

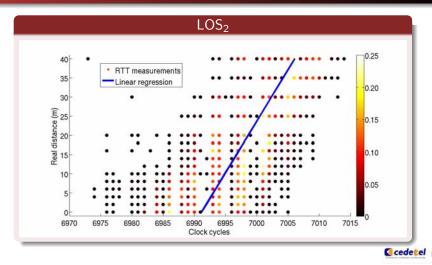
NLOS

jprieto@cedetel.es

Experimental Setup RTT Measurements Distance Estimation Indoor Location

Outline

- Location approach
 - Wireless cellular location techniques
- 2 TOA Estimation
 - RTT measuring
 - Hardware design
- 3 Assessment of the system
 - Experimental Setup
 - RTT Measurements
 - Distance Estimation
 - Indoor Location


Summary

• Conclusions and future work

Experimental Setup RTT Measurements Distance Estimation Indoor Location

Distance Estimation

jprieto@cedetel.es RTS/CTS mechanism with 802.11 for indoor location

◆□▶ ◆□▶ ◆三▼ ◆三▼ ◆□▼

Experimental Setup RTT Measurements Distance Estimation Indoor Location

Outline

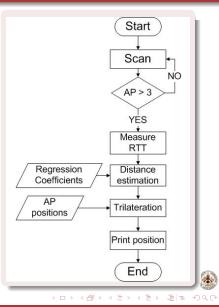
- Location approach
 - Wireless cellular location techniques
- 2 TOA Estimation
 - RTT measuring
 - Hardware design

3 Assessment of the system

- Experimental Setup
- RTT Measurements
- Distance Estimation
- Indoor Location

Summary

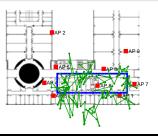
• Conclusions and future work

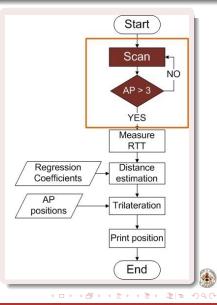


Experimental Setup RTT Measurements Distance Estimation Indoor Location

Stages

- Regression coefficients computation
- APs selection
- In the second second
- Oistance estimation
- Ositioning



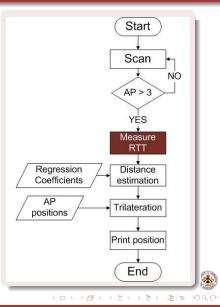

jprieto@cedetel.es

Experimental Setup RTT Measurements Distance Estimation Indoor Location

Stages

- Regression coefficients computation
- APs selection
- In the second second
- Oistance estimation
- Ositioning

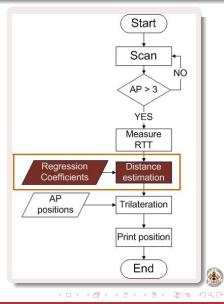



jprieto@cedetel.es

Experimental Setup RTT Measurements Distance Estimation Indoor Location

Stages

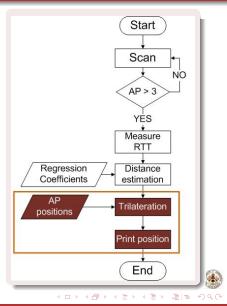
- Regression coefficients computation
- APs selection
- In the second second
- Oistance estimation
- Ositioning


jprieto@cedetel.es

Experimental Setup RTT Measurements Distance Estimation Indoor Location

Stages

- Regression coefficients computation
- APs selection
- 8 RTT Measuring
- Oistance estimation
- Ositioning


jprieto@cedetel.es

Experimental Setup RTT Measurements Distance Estimation Indoor Location

Stages

- Regression coefficients computation
- APs selection
- In the second second
- Oistance estimation
- O Positioning

jprieto@cedetel.es

Conclusions and future work

Outline

- 1 Location approach
 - Wireless cellular location techniques
- 2 TOA Estimation
 - RTT measuring
 - Hardware design
- 3 Assessment of the system
 - Experimental Setup
 - RTT Measurements
 - Distance Estimation
 - Indoor Location

4 Summary

• Conclusions and future work

(日本) (日本) (日本) (日本)

Conclusions and future work

Conclusions

- Measurements are non-normal distributed
- Accuracy of around 1m in distance estimation
- NLOS paths overestimate the distance
- Position is estimated in a real environment

Future work

- Optimum geometric distribution of the APs
- Prior NLOS measurements correction
- Location tracking
- Channel characterization

Cedete

비는 지민에지는 지민에 지하는 지마?

Conclusions and future work

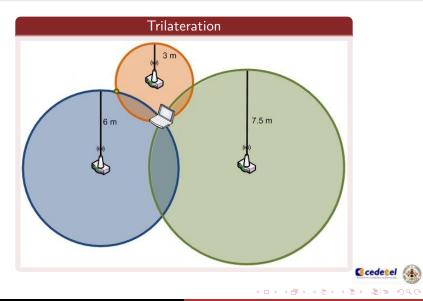
Conclusions

- Measurements are non-normal distributed
- Accuracy of around 1m in distance estimation
- NLOS paths overestimate the distance
- Position is estimated in a real environment

Future work

- Optimum geometric distribution of the APs
- Prior NLOS measurements correction
- Location tracking
- Channel characterization

Cedete


THANK YOU FOR YOUR ATTENTION!!

Javier Prieto

jprieto@cedetel.es

THANK YOU Trilateration

