Realization of an Adaptive Hybrid Low-cost GPS/INS Integrated Navigation System with Switched Position-Domain and Range-Domain Filtering Strategy

Junchuan Zhou, Stefan Knedlik, Zhen Dai, Ezzaldeen Edwan, Otmar Loffeld

University of Siegen Center for Sensorsystems (ZESS) Germany

NAV08/ILA37

Outline	GPS/INS Integration	Low-Cost IMUs	Simulation Results	Conclusions
Content				
 GPS/I Adaponavig Low-o Experiod Simulation GPS num GPS - GPS - GPS 	INS integration tive hybrid G ation system cost MEMS-b riment Setup lation results gration filter u S/INS integration bers of tracket S signal outage de of IMUs	on archite PS/INS in ased IMUs ased IMUs ased IMUs based IMUs base	ctures tegrated s erent	
UNIVERSITY OF SIEGEN		NAV08/ILA37	2	ESS IPP International Programme Multi Sensorics

On GPS/INS integration strategies

Loosely-coupled GPS/INS integration

- A decentralized estimation architecture with independent and redundant solutions from INS and GPS.
- At least 4 satellites have to be in view to obtain an update from the GPS based measurement .
- In case of one KF in the GPS receiver, one KF for Integration (cascaded filtering), the system may have accuracy and stability problem.

Tightly-coupled GPS/INS integration

- INS estimates are corrected by GPS when less than 4 satellites in view.
- More complex integration KF state space and observation models.

Deeply-coupled GPS/INS integration

- INS aiding of GPS
 - GPS tracking loops bandwidth reduction
 - improved accuracy, robustness (anti-jamming)
 - faster acquisition and tracking
- Access to the tracking loops is required.

Various ways to integrate GPS and INS.

• What is a good design of the GPS/INS integration architecture ?

After the book: "Principle of GNSS, Inertial, and Multisensor Integrated Navigation Systems" from Dr. Paul D. Groves.

- Maximizing the accuracy and robustness of the navigation solution
- Minimizing the system complexity
- Optimizing the processing efficiency

System Architecture

Outline		C	GPS/I	NS I	ntegrati	ion	Low-Cost IMUs		Simulation Results		ults	Conclusions			
System m	odel														
Low-cost gyroscopes can not sense Earth's rotation , and Transport rate and Coriolis terms can be neglected in the strapdown processing and in the system model for the integration Kalman filter.															
➔ A simplified <i>n</i> -frame error state system model is															
position error	$\int \Delta \dot{\mathbf{x}}$		0	Ι	0	0	0	0	0	$\int \Delta \mathbf{x}$]	with			
velocity error	$\Delta \dot{\mathbf{v}}$		0	0	F_{23}	R_b^n	0	0	0	$\Delta \mathbf{v}$					_
attitude error	Δψ		0	0	0	0	$-R_{b}^{n}$	0	0	$\Delta \psi$			0	$-a_{ib,d}^n$	$a^n_{ib,e}$
accelerometer bias	$\Delta \dot{\mathbf{b}}_a$	=	0	0	0	0	0	0	0	$\cdot \mid \Delta \mathbf{b}_a$	$+\mathbf{W}$	$F_{23} =$	$a^n_{ib,d}$	0	$-a_{ib,n}^n$
gyro bias	$\Delta \mathbf{b}_{\omega}$		0	0	0	0	0	0	0	$\Delta \mathbf{b}_{\omega}$			$-a_{ib}^n$	a_{ib}^n	0
clock error	$c\Delta \dot{t}_r$		0	0	0	0	0	0	1	$c\Delta t_r$		L		10,11	
	$\underbrace{c\Delta\ddot{t}_{r}}_{r}$		0	0	0	0	0	0	0	$\lfloor c\Delta \dot{t}_r$					
	$\Delta \mathbf{x}_{c}$					\widetilde{F}									

The discrete-time analogue is expressed as $\xi(k+1)=A(k)\xi(k)$ with

$$A(k) = \phi((k+1)T, kT) = \phi(T) = e^{F((k+1)T - kT)} = e^{(FT)}$$
$$= \mathcal{L}^{-1}\left\{ [sI - F]^{-1} \right\} \Big|_{t=T} = I + F \cdot T + \frac{(F \cdot T)^2}{2} + \text{h.o.t.}$$

	Outline	GPS/INS Integration	Low-0	ost IMUs <mark>Simulatio</mark>		on Result	Conclusions	
	Experiment se	etup						
Position E [m]	2000 1000 0 -1000 -2000 0 10000 20000 3		Trajectory Nominal Velocity 20 m/s					
Ē	2000		(LLH)		$\mathbf{x}^{LLH} = \begin{bmatrix} 51^{\circ} \mathbf{N} & 8^{\circ} \mathbf{E} & 360 \mathbf{m} \end{bmatrix}^{T}$			
Position N	0 -1000 -2000 0 10000 3			Circle Radius Start Time (UTC)		1000 m October 29, 2006, 00:11:27		
			Duration		300 s			
				GPS measurements				
			Measureme	ent rate	5 Hz			
	0 10000 20000 30 Time [0.01 s]	0000 0 10000 20000 Time [0.01 s]	30000	Positioning	method	Single-po	int positioning	
	Trajectory simulated	from IFEN RF signal simul	lator	Error model	ing	Tropospheric and ionospheric delays are estimated and corrected for.		
	Gyroscope (Angular rate	s)		Satellites in	view	9 (unless stated otherwise		
Bias instability [°/h] 360				Elevation ar	ngle	≥ 5°		
	Scale factor [ppm]	10000		IMU measurements				
	Noise (ARW) [°/√h]	3		Update rate	1	100 Hz		
	Accelerometer (specific f		Error model	ing	cf. Table 1			
$\left\ - \right\ $	Bias instability [µg] Scale factor [nnm]		Integration					
	Noise (VRW) [µg/√Hz]		Filter update rate 1 Hz, 0.5 Hz			Hz		

Typical error of a low-cost MEMS IMU

Parameters for the simulation of the following experiment.

Loosely-coupled integration with the Least-squares estimator for GPS receiver, and 15-state Kalman Filter for integration with

1 Hz, 0.5 Hz Hz filter update rates100 Hz IMU measurements

Tightly-coupled integration with using centralized 17state Kalman Filter with

•0.5 Hz filter update rates•100 Hz IMU measurements

OutlineGPS/INS IntegrationLow-Cost IMUsSimulation ResultConclusionsScenario 3: Adaptive hybrid integrated navigation system

	Outline	GPS/INS Integration	Low-Cost IMUs		Simulation Result	Conclusions				
Scenario 3: Adaptive hybrid integrated navigation system										
	Tig	ghtly-coupled Integ	grated navi	gation	system					
	Po	Position Error (mean/sigma) 2.4368/0.6665 (m)								
	Ve	locity Error (mea	n/sigma)	0.137	8 /0.0777 (m/s)					
Adaptive hybrid navigation system										
	Position Error (mean/sigma) 2.3524/0.4756 (m)									
	Ve	locity Error (mea	n/sigma)	0.118	1/0.0680 (m/s)					
Position and velocity errors (after 120 s) of tightly-coupled and adaptive hybrid navigation system										
	Tightly-coupled Integrated navigation system									
	Pos	sition Error (mea	n/sigma)	2.427	4/0.6423 (m)					
	Ve	locity Error (mea	n/sigma)	0.127	8 /0.0717 (m/s)					
	Do	sition Ennon (moo	n/sigma)	2 3/3	5/0.4556 (m)					

 Position Error (mean/sigma)
 2.3435/0.4556 (m)

 Velocity Error (mean/sigma)
 0.1055/0.0611 (m/s)

Mean position and velocity errors after 10 runs

Conclusions:

Scenario 1 (Loosely-coupled Integration)

 For low-cost MEMS-based IMU, GPS measurement update rate is an important factor regarding the accuracy of the navigation solution.

Scenario 2 (Tightly-coupled Integration)

- 2-1: Proper initialization of the integration Kalman filter is important.
- 2-2: With more satellites in view, the results will be better. When less than 4 satellites are in view, INS estimates can be corrected from measurements of remaining satellites, but navigation solution is obviously biased.
- 2-3: For long time GPS signal outages, positioning errors are bounded.
 For short time GPS signal outages, positioning errors seem to be unbounded (drift over time).
- 2-4: With high grade IMU, the single-point GPS positioning errors are the dominant part of the total errors rather than the drift from IMU.

Scenario 3 (Adaptive Navigation System)

- There is no convergence problems for initializing the integration algorithm.
- Fast convergence when system leaves challenging signal environments.
- System complexity has been reduced when system is navigating under good signal conditions, with higher GPS measurement update rate.

Thank you for your attention!

