

The impact of new signals on precise marine navigation - initial results from an experiment in Harwich harbour

NAV08/ILA37

29th October 2008

Alex Parkins¹, Alan Grant² and Paul Cross¹

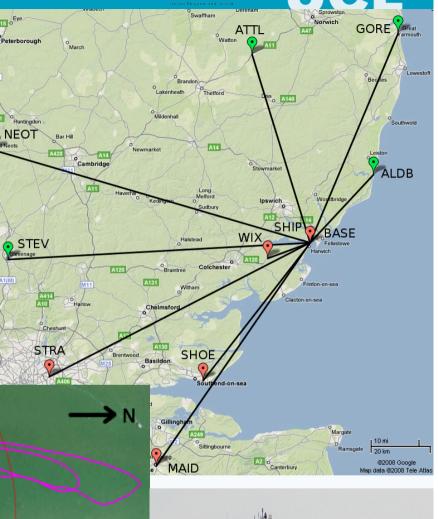
¹ Department of Civil, Environmental and Geomatic Engineering, University College London ² General Lighthouse Authorities of the United Kingdom and Ireland

International Maritime Organisation requirements for a future GNSS

RESEARCH &

IMO navigation	Accuracy	Integrity			Continuity	Availability
requirements		Alert limit	Time to alert	Integrity risk	over 3 hours	per 30 days
Ocean and coastal	10 m	25 m	10 s	10 ⁻⁵	N/A	99.8%
Port approach	10 m	25 m	10 s	10 ⁻⁵	99.97%	99.8%
Port navigation	1 m	2.5 m	10 s	10 ⁻⁵	99.97%	99.8%
Automatic docking	0.1 m	0.25 m	10 s	10 ⁻⁵	99.97%	99.8%

IMO Resolution A.915


AUCI

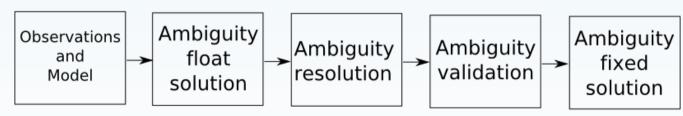
Research questions

- What techniques are capable of meeting these requirements?
- What infrastructure is required?
- What are the benefits of modernised GPS and Galileo?

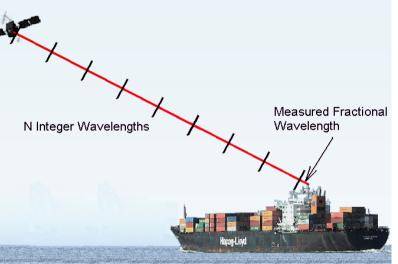
Data collection (1)

- *THV Alert* simulating docking in Harwich harbour
- 1 hour 20 min of 1 Hz GPS data
- L2C signal recorded
- OS reference station data obtained
- Two total stations provide truth model

RADIONAVIGATION


Data collection (2)

RESEARCH &


GPS processing techniques

- Point positioning
 - Stand-alone code positioning
- Differential GPS (DGPS)
 - Local reference station used to reduce code error
- Single-epoch Real Time Kinematic (RTK)
 - Phase observations used as precise ranges
 - Robust against loss-of-lock and cycle slips
 - Reference station required

Variety of baseline lengths processed

Determine infrastructure necessary to meet IMO requirements

Truth model (1)

- 1. Interpolate total station positions to match GPS time-tags
- 2. Solve clock offset
- 3. Compare positions

 Total station measurement update not synchronous with position output

- -Significant error source
- Total stations agree with each other to 0.5 m (95%)

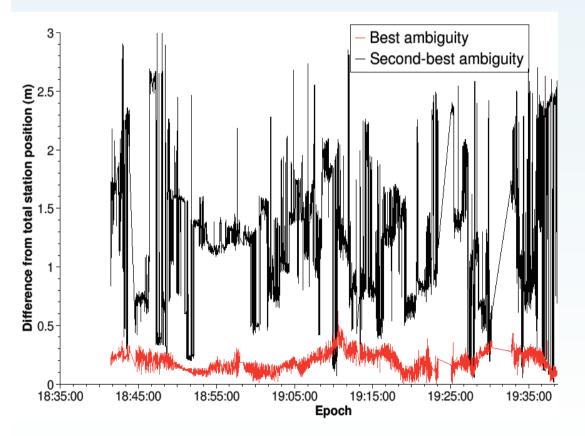
– But strictest IMO requirement is 0.1 m (95%)

Total stations not sufficiently accurate to provide truth model

Résearches Adionavigation

Total Station position

GPS position


LIC

25 cm radius

+

Truth model (2)

- Short-baseline (1 km) RTK GPS is very accurate
 - But ambiguity resolution must be correct
- Total station measurements used to validate ambiguity resolution

 Best ambiguity set does not change

Research &

• Second-best set often changes

Use the short-baseline GPS as the truth model – ambiguities validated

Determining the requirements

Difficult to apply the IMO requirements directly

Definitions used:

Accuracy

- 95th percentile of the difference between the obtained positions and the truth

Integrity Risk

- Proportion of 10 s spans containing at least one integrity error and no valid positions

RESEARCH &

UCI

Availability

- Percentage of 10 s spans that contain at least one valid position

Continuity

- Percentage of the total experiment time covered by the longest span with no 10 s gaps

RESEARCH & RADIONAVIGATION

Were the requirements met?

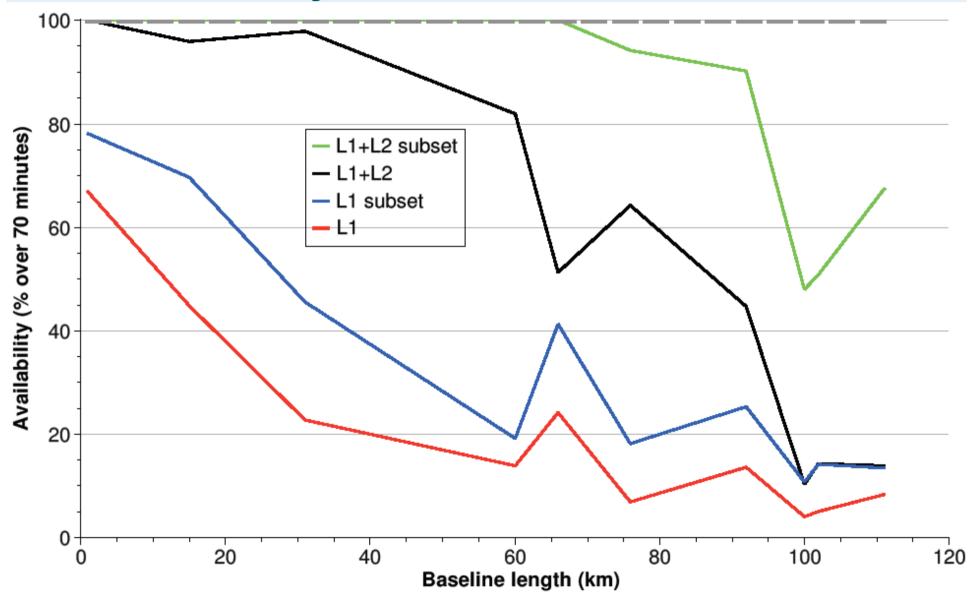
	Point	Differential	Real Time
	positioning	GPS	Kinematic
Ocean and coastal	Yes	> 110 km baseline	Dual-freq. 1 km baseline
Port	Yes	> 110 km	Dual-freq. 1
approach		baseline	km baseline
Port	Too low	> 110 km	Dual-freq. 1
navigation	accuracy	baseline	km baseline
Automatic	Too low	Too low	Dual-freq. 1
docking	accuracy	accuracy	km baseline

Ambiguity resolution difficulties

- RTK limited by availability and continuity
 - -Linked to ambiguity resolution success rate
- Difficult environment

Using single-epoch geometry-based technique:

- Phase observations cannot be checked for outliers before ambiguity resolution
- Outlier in a single phase observation can prevent successful ambiguity resolution


Subset ambiguity resolution algorithm

• Only apply if normal ambiguity resolution fails

RESEARCH &

- 1. Generate all ambiguity subsets
- 2. Order according to some criterion
- 3. Attempt to fix each in turn
 - Only accept if values are what we are expecting from previous epochs
- Computationally intensive

RTK availability

RESEARCH &

UCL

Summary

IMO navigation	Accuracy	Integrity			Continuity	Availability
requirements		Alert limit	Time to alert	Integrity risk	over 3 hours	per 30 days
Ocean and coastal	10 m	25 m	10 s	10 ⁻⁵	N/A	99.8%
Port approach	10 m	25 m	10 s	10 ⁻⁵	99.97%	99.8%
Port navigation	1 m	2.5 m	10 s	10 ⁻⁵	99.97%	99.8%
Automatic docking	0.1 m	0.25 m	10 s	10 ⁻⁵	99.97%	99.8%

RESEARCH &

- Point positioning for ocean and coastal, and port approach
- DGPS also meets port navigation requirements
- Dual-frequency RTK required for automatic docking
 - -1 km maximum baseline
- Subset ambiguity resolution extends this to 66 km

Further work

• Determine benefits of modernised GPS and Galileo

Acknowledgements

This work is funded through an EPSRC CASE studentship with the General Lighthouse Authorities of the UK and Ireland

 $\mathbb{R}^{\operatorname{Research}(\mathbb{R})}_{\operatorname{ADIONAVIGATION}}$

AUC

I would also like to thank Topcon for supplying equipment and assisting with data collection, and Ordnance Survey for supplying reference station data