



# A Prototype Positioning System based on Digital Audio Broadcast Signals

#### **Duncan Palmer, Terry Moore, Chris Hill**

Institute of Engineering Surveying and Space Geodesy The University of Nottingham United Kingdom





## **Overview**



- Why use the DAB signal?
- Technical Characteristics
- Positioning Potential
- Hardware/Software
- Network Geometry Simulation (HDOP)
- Early results
- Conclusions





# **Digital Audio Broadcast Signal**



#### Why use the DAB signal?

- Designed for dynamic receivers (car radios)
- Uses Single Frequency Networks (SFNs) synchronised by GPS
- Two National and many Local/Regional SFNs
- > 85% UK coverage
- Terrestrial signal power
  up to 1000× higher than
  GNSS signal power



IESSG Institute of Engineering Surveying & Space Geodesy

#### DAB Signal Characteristics Signal Basics





#### DAB Signal Characteristics System Clock



- DAB system clock frequency = **2.048MHz**
- Fundamental DAB Unit *T* obtained by:

$$T = \frac{1}{2.048e^6} = 0.48828\mu s$$

- All units in system can be derived from this value
- Describes time periods in the temporal domain
- Speed of light travels ≈ **146m** in one unit of *T*



#### **DAB Signal Characteristics Transmission Frame**



- Consists of three channels broadcast sequentially:
  - Synchronisation Channel used for signal acquisition
    - Composed of 1 Null and 1 OFDM symbol (length ≈ 2.5ms)
  - Fast Information Channel used for multiplex data
    - Composed of 3 OFDM symbols (length **≈ 3.7ms**)
  - Main Service Channel used for "music" data
    - Composed of 72 OFDM symbols (length ≈ 89.7ms)



#### **DAB Signal Characteristics** Synchronisation Channel Structure



The University of **Nottingham** 



#### **DAB Signal Characteristics Transmitter Identification (TII)**



The University of **Nottingham** 



IESSG Institute of Engineering Surveying & Space Geodesy

### **Positioning Potential of DAB**



- To use the Synchronisation Channel for **Time Difference of Arrival** (TDOA) measurements
  - Subsequent transmissions start in the Guard Intervals of first received transmission
  - Transmitter locations are known from TII





#### Hardware

# The Universal Software Radio Peripheral (USRP)





#### Hardware DAB Antenna





- 360° Beamwidth
- Frequency Range:
  - 200 240 MHz
- Gain 2.2 dBd



#### Software GNU Radio





- Matlab or similar to post-process data



#### **Two DAB Signals** Captured in Frequency Domain



The University of **Nottingham** 





#### **Initial Test Region** Nottinghamshire/Leicestershire





![](_page_13_Picture_3.jpeg)

#### Matlab Simulation Results TDOA HDOP Map – Approach 1

![](_page_14_Picture_1.jpeg)

- TDOA HDOP Simulation based on 4 synchronised DAB Tx locations in the Notts/Leics area using a single network
- Gives three independent TDOA measurements

![](_page_14_Figure_4.jpeg)

#### Matlab Simulation Results Difficulties to overcome

![](_page_15_Picture_1.jpeg)

- **Problem 1**: Many areas will not receive national signals from more than two transmitters
  - <u>Solution</u>: Multi-network solution (i.e. Both National networks simultaneously)
- **Problem 2**: Most transmitter sites broadcast more than one network (e.g. Both National networks and a local network)
  - <u>Solution</u>: Combination of two local networks which are unlikely to share transmitter sites
  - Involves a different strategy using two pairs of synchronised transmitters

![](_page_15_Picture_7.jpeg)

#### **Conceptual Network** Time Difference of Arrival

![](_page_16_Picture_1.jpeg)

![](_page_16_Figure_2.jpeg)

#### Matlab Simulation Results TDOA HDOP Map – Approach 2

![](_page_17_Picture_1.jpeg)

- TDOA HDOP Simulation based on the same transmitters but using 2 pairs of synchronised transmitters – two local networks
- Gives two independent TDOA measurements

![](_page_17_Figure_4.jpeg)

#### **TDOA Measurement Process** Find First Null Symbol

![](_page_18_Picture_1.jpeg)

The University of **Nottingham** 

![](_page_18_Figure_3.jpeg)

Find end of first Null Symbol in the temporal domain by testing against pre-defined value

![](_page_18_Picture_5.jpeg)

#### **TDOA Measurement Process Define Symbols**

![](_page_19_Picture_1.jpeg)

![](_page_19_Figure_2.jpeg)

#### **TDOA Measurement Process Compare Extracted Data**

![](_page_20_Picture_1.jpeg)

![](_page_20_Figure_2.jpeg)

From right to left, data practically overlaps perfectly until this cut-off point

![](_page_20_Picture_4.jpeg)

#### **TDOA Measurement Process Calculate Time Delay**

![](_page_21_Picture_1.jpeg)

![](_page_21_Figure_2.jpeg)

#### **Initial Positioning Results East Midlands Test Region**

![](_page_22_Picture_1.jpeg)

![](_page_22_Figure_2.jpeg)

![](_page_22_Picture_3.jpeg)

#### **TDOA Measurement Process** New TFPR CIR Approach

![](_page_23_Picture_1.jpeg)

- Described measurement system used for rough signal acquisition
- New algorithm to use Channel Impulse Response
  (CIR) Method using the TFPR symbol
- TFPR values known to receiver, so cross-correlation technique used
- Will provide multiple TDOA measurements per network

![](_page_23_Picture_6.jpeg)

#### **Error Sources**

![](_page_24_Picture_1.jpeg)

- TII information indicates that only 2 transmitters are received per network...
  - A 3<sup>rd</sup> much weaker transmitter in some areas could make timing cut-off measurement "diffuse"
- Although synchronised by UTC, deliberate timing biases can be inserted as part of the SFN design to avoid ISI
- Cross-correlation of TFPR symbol should give better TDOA than time delay measurement
- Geometry of each network affects HDOP values
- No terrain correction currently
  - Possible Multipath interference

![](_page_24_Picture_9.jpeg)

#### **Summary**

![](_page_25_Picture_1.jpeg)

- DAB signal contains components usable for positioning purposes
- Low-frequency, terrestrial signal provides good power and horizontal geometry of transmitters
- Early HDOP simulations indicated good coverage in UK, particularly in urban areas where GPS difficulties could occur
- Geometry of networks affects HDOP values
  - Network designed for comms NOT navigation
- Use of 2 pairs of transmitters from different local networks most likely solution
- Improvements expected using second algorithm
  - CIR approach over the TFPR symbol

![](_page_25_Picture_10.jpeg)

#### **Contact Details**

![](_page_26_Picture_1.jpeg)

Duncan Palmer PhD Candidate The University of Nottingham University Park Nottingham NG7 2RD UK

- Telephone:
- Fax:
- Email:
- WWW:

+44 (0) 115 951 3880 +44 (0) 115 951 3881 isxdp2@nottingham.ac.uk www.nottingham.ac.uk/iessg

![](_page_26_Picture_8.jpeg)

![](_page_26_Picture_9.jpeg)