



# Nonlinear SAR/INS Integration using Sigma-Point Kalman Filter

Andreas Maier, Stefan Kiesel and Gert F. Trommer







- Objectives
- SAR/INS System Overview
- Synthetic Aperture Radar
- SAR/INS Integration
- Simulation Results
- Conclusion





Sensors



## **Comparison of sensor characteristics**





![](_page_3_Picture_2.jpeg)

- Implementation of Sigma-point Kalman filter for SAR/ INS integration
- SAR/INS position accuracy analysis
- Investigation of required feature update rates
- SAR/INS in combination with
  - Baromeric altimeter
  - Terrain Referenced Navigation (TRN)

![](_page_4_Picture_2.jpeg)

![](_page_4_Figure_3.jpeg)

**Andreas Maier** 

#### Features

Unambiguous and well visible e.g.

- Crossroads
- Courses of rivers

#### Feature displacement

Displacement between imaged feature and map feature is used for navigation update

$$\vec{\delta} = \begin{pmatrix} \delta_x \\ \delta_y \end{pmatrix} = \begin{pmatrix} p_{f,x}^{SAR} - p_{f,x}^{MAP} \\ p_{f,y}^{SAR} - p_{f,y}^{MAP} \end{pmatrix}$$

![](_page_5_Figure_1.jpeg)

![](_page_5_Figure_2.jpeg)

![](_page_5_Figure_3.jpeg)

Andreas Maier

![](_page_6_Figure_3.jpeg)

**velocity:** 
$$\hat{\vec{v}}^S = (\hat{v}_x \ 0 \ \hat{v}_z)^T = C_N^S \hat{\vec{v}}^N$$

- Definition of sensor coordinates
  - x in flight direction
  - z upwards
  - y forms a right handed coordinate system
  - Origin is located at ground level

### Transformation matrix

Transformation from n to s-frame by rotation around down-axis

$$C_N^S = \begin{pmatrix} \cos(\Psi_v) & \sin(\psi_v) & 0\\ \sin(\Psi_v) & -\cos(\psi_v) & 0\\ 0 & 0 & -1 \end{pmatrix}$$

![](_page_7_Picture_2.jpeg)

![](_page_7_Figure_3.jpeg)

Information of each reflection point form range and Doppler frequency

 SAR-Processing forms image in xy coordinates

$$\vec{p}_{f}^{SAR} = \vec{f}\left(f_{d}, R, \hat{\vec{p}}, \hat{\vec{v}}\right)$$

![](_page_8_Picture_0.jpeg)

![](_page_8_Picture_3.jpeg)

- Map feature has to be transformed into s-frame coordinates
- Nonlinear measurement equation depending on all position and velocity components

Map feature:  
$$\vec{p}_{f}^{MAP} = C_{N}^{S} \cdot \begin{pmatrix} (\phi_{f} - \hat{\phi}) \cdot R_{n} \\ (\lambda_{f} - \hat{\lambda}) \cdot (R_{e} \cdot \cos(\hat{\phi})) \\ 0 \end{pmatrix}$$

Measurement equation:

$$\vec{\delta} = \begin{pmatrix} \delta_x \\ \delta_y \end{pmatrix} = \begin{pmatrix} p_{f,x}^{SAR} - p_{f,x}^{MAP} \\ p_{f,y}^{SAR} - p_{f,y}^{MAP} \end{pmatrix} = \begin{pmatrix} h_x(\vec{p}, \vec{v}) \\ h_y(\vec{p}, \vec{v}) \end{pmatrix}$$

#### Sigma-point Kalman filter

- 15-State SPKF has been implemented
- Measurement noise includes matching errors and map errors
- Sigma-point Kalman filter takes into account higher order terms automatically 🧷
- Provides more accurate update in case of nonlinear measurement models

State vector and measurement noise

$$\vec{\mathbf{x}} = \left( \Delta \vec{p}^N, \Delta \vec{v}^N, \Delta \vec{\Psi}, \Delta \vec{b}_a, \Delta \vec{b}_\omega \right)$$
$$\vec{\nu} = \left( \nu_{a,x}, \nu_{a,y}, \nu_{f,x}, \nu_{f,y}, \nu_{f,z} \right)$$

Augmented state vector construction

$$\hat{\mathbf{x}}^{a} = E[\vec{\mathbf{x}}^{a}] = (\hat{\mathbf{x}}^{T}\hat{\vec{\nu}}^{T})^{T}$$
$$\mathbf{P}^{\mathbf{a}} = E[(\hat{\mathbf{x}}^{a} - \bar{\mathbf{x}}^{a}) \cdot (\hat{\mathbf{x}}^{a} - \bar{\mathbf{x}}^{a})^{T}] = \begin{pmatrix} \mathbf{P} & \mathbf{0} \\ \mathbf{0} & \mathbf{R} \end{pmatrix}$$

![](_page_9_Picture_13.jpeg)

![](_page_10_Picture_0.jpeg)

![](_page_10_Picture_3.jpeg)

$$\vec{\chi}_{0}^{a} = \hat{\vec{x}}^{a}$$

$$\vec{\chi}_{i}^{a} = \hat{\vec{x}}^{a} + \zeta \sqrt{\mathbf{P}^{a}}_{i}, \quad i = 1...L$$

$$\vec{\chi}_{i+L}^{a} = \hat{\vec{x}}^{a} - \zeta \sqrt{\mathbf{P}^{a}}_{i}, \quad i = 1...L$$

$$\vec{Y}_{i} = \vec{h}(\vec{\chi}_{i}^{a})$$

#### Processing steps

- Produce sigma-points
- Transform by measurement equation
- Calculate mean, covariance and correlation

![](_page_10_Figure_9.jpeg)

#### Example of sigma-points

![](_page_10_Figure_11.jpeg)

![](_page_11_Picture_0.jpeg)

![](_page_11_Figure_3.jpeg)

- Sigma-point Kalman filtering is analogous to EKF-processing
  - Calculate gain matrix
  - Calculate navigation error
  - Calculate new covariance matrix
- Correlation and covariance accurate to the second order term

![](_page_11_Figure_9.jpeg)

![](_page_12_Picture_0.jpeg)

![](_page_12_Figure_3.jpeg)

![](_page_13_Picture_0.jpeg)

### Sensor accuracies

![](_page_13_Picture_4.jpeg)

Navigation grade IMU

![](_page_13_Picture_6.jpeg)

Map error standard deviation: 3m Matching error standard deviation: 7m

![](_page_13_Picture_8.jpeg)

Measurement noise 2% DTED level 1, 100m spacing

# **Trajectory**

![](_page_13_Picture_11.jpeg)

Andreas Maier

![](_page_14_Picture_0.jpeg)

![](_page_14_Figure_2.jpeg)

![](_page_14_Picture_3.jpeg)

- Barometric altimeter aids height estimation
- Navigation error depends on feature update rate
- Feature updates in the scale of a few minutes needed

![](_page_14_Figure_7.jpeg)

![](_page_15_Picture_0.jpeg)

![](_page_15_Figure_2.jpeg)

![](_page_15_Picture_3.jpeg)

- TRN: No accurate estimation over flat area
- SAR prevents increasing position errors over smooth terrain
- TRN leads to reliable navigation information even if no SARfeatures are available
- TRN and SAR show different characteristics

![](_page_15_Figure_8.jpeg)

![](_page_16_Picture_0.jpeg)

![](_page_16_Picture_2.jpeg)

- SAR/INS is able to provide 3-dimensional navigation information
- Autonomous navigation achievable by SAR/INS
- Feature updates in the scale of a few minutes required
- SAR in combination with low cost TRN is optimal due to complementary sensor characteristics.

![](_page_17_Picture_0.jpeg)

![](_page_17_Picture_1.jpeg)

# Thank you for your attention

Andreas Maier, Stefan Kiesel and Gert F. Trommer

![](_page_20_Picture_0.jpeg)

![](_page_20_Picture_2.jpeg)

![](_page_20_Picture_3.jpeg)

- Barometric altimeter aids height estimation
- Navigation error depends on feature update rate
- Feature updates in the scale of a few minutes needed

![](_page_20_Figure_7.jpeg)

![](_page_21_Picture_0.jpeg)

![](_page_21_Picture_2.jpeg)

Measurement equation

$$\tilde{r} = -h - h_{map}(\phi, \lambda) + \nu$$

![](_page_21_Figure_5.jpeg)

![](_page_21_Figure_6.jpeg)

Reasonable terrain roughness required

**Andreas Maier** 

terrain