Optimising the algorithm design for high-integrity relative navigation using carrier-phase relative GPS integrated with INS

Paul D Groves, Charles R Offer, Christopher J Mather, Graham W Pulford, Immanuel A Ashokaraj, Alex A Macaulay

A presentation to: NAV08/ ILA37

www.QinetiQ.com

© Copyright QinetiQ limited 2008

02 Top-level processing architecture
03 Single-node INS/GPS
04 Reference data fusion
05 Relative navigation
06 Integrity
07 Further work
08 Conclusions

One of the most challenging problems in navigation is to provide a **relative navigation** solution that is both **accurate** and has **high integrity**

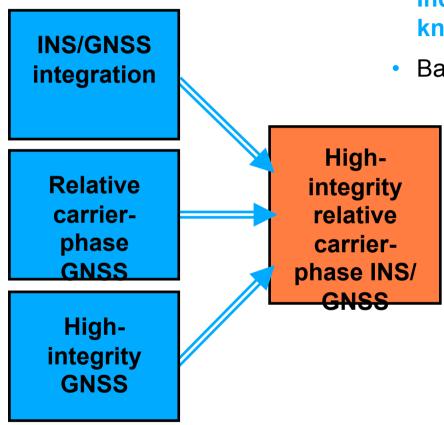
Applications include

- Air-to-air refuelling (AAR)
- Automatic landing on ships
- Formation flying
- Separation assurance for civil aviation (in the air & on the ground)
- Train collision avoidance

01 Introduction – Example: Air-to-Air Refuelling (AAR)

- UAVs with long-duration missions need to refuel whilst airborne
- Automation is desirable, otherwise the UAV must be remotely-operated
- Relative navigation helps rendezvous with tanker and station-keeping
- Additional short-range sensors used for the final hook-up
- A safety critical application
 ⇒Integrity must be high
- Rover = refuelling aircraft (i.e. UAV)
- Reference = tanker aircraft

01 Introduction - Requirements


- High integrity
 - Sub-meter alert limits
 - Low (~10⁻⁷) probability of exceeding them
- High accuracy
 - In practice, sub decimeter
 - Carrier-phase relative GPS
- High continuity
 - Avoid sudden failures in the navigation solution
 - Keep the navigation solution usable into the future
 - INS integration gives gradually degrading performance when GPS fails
- Maximum availability
 - Solution only useful if available most of the time

01 Introduction - Challenges

Individually, each technology is wellknown

- Basics are covered in standard textbooks Combining them raises a number of new challenges How to
 - Combine INS/GNSS integration with carrier-phase ambiguity resolution
 - Adapt integrity monitoring methods (e.g. LAAS) to relative navigation
 - Use INS to aid GNSS integrity monitoring
 - Isolate faulty data when the navigation solution is filtered
 - Model position solution performance

QinetiQ

02 Top-level processing architecture

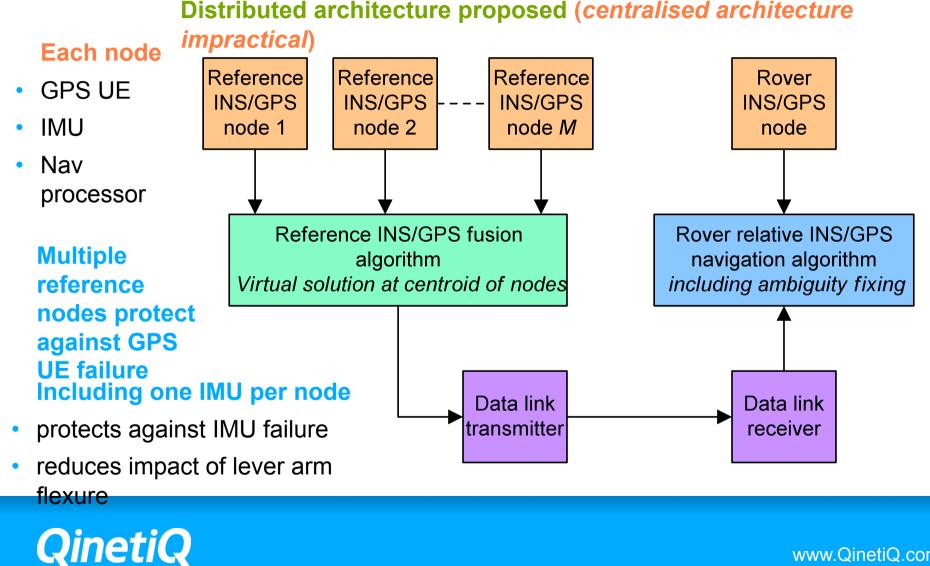
03 Single-node INS/GPS

04 Reference data fusion

05 Relative navigation

06 Integrity

07 Further work


08 Conclusions

02 Top-level processing architecture

02 Top-level processing architecture

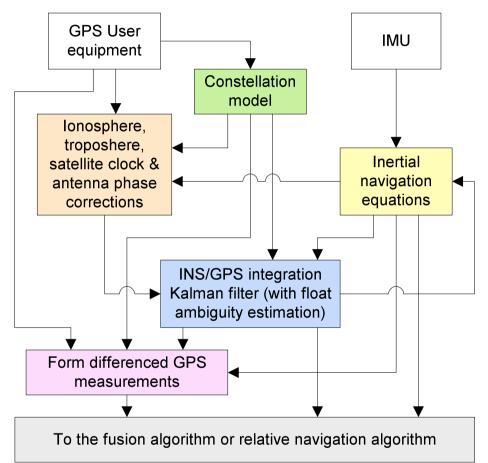
03 Single-node INS/GPS

04 Reference data fusion

05 Relative navigation

06 Integrity

07 Further work


08 Conclusions

03 Single-node INS/GPS

Kalman filter augmented to estimate float ambiguities

For initialising the relative filter.

- Sometimes known as pre-filtering
- Reduces convergence time

Inputs separate code and carrier measurements

Separate L1 and L2 measurements

- Robust against signal interruption
- Optimal weighting for c/n₀
- Flexible ionosphere calibration
- Iono-free combination increases the effect of tracking noise

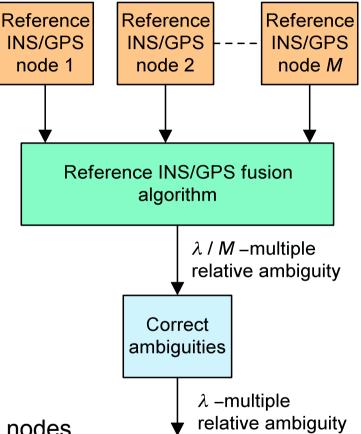
See the paper for the Kalman filter states

01 Introduction
02 Top-level processing architecture
03 Single-node INS/GPS
04 Reference data fusion
05 Relative navigation
06 Integrity
07 Further work
08 Conclusions

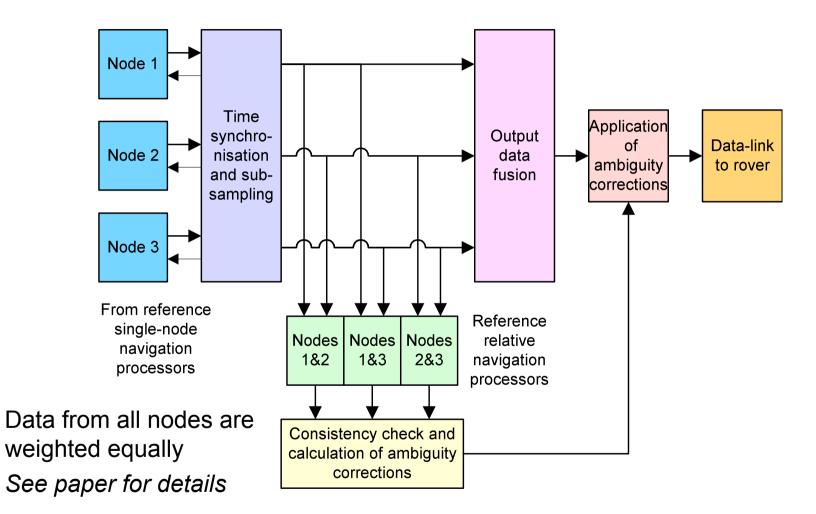
www.QinetiQ.com

© Copyright QinetiQ limited 2008

04 Reference data fusion


Fusing reference node data has many benefits

- Fewer ambiguities in the rover
- Rover can ignore lever arms between reference nodes
- Fused data can be transmitted more quickly than separate data


There is a problem:

QinetiQ

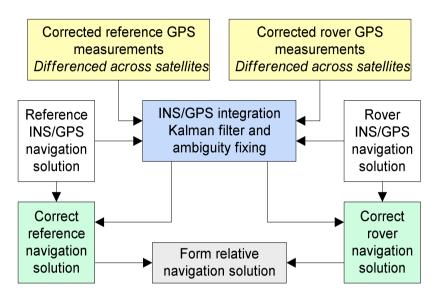
- Relative ambiguities become multiples of λM
- Requires *M* times more precision
- Fusing only reduces noise by M^{1/2} QinetiQ's patent pending solution
- Resolve the relative ambiguities of the reference nodes
- Correct the fused reference data $\Rightarrow \lambda$ -multiple relative ambiguities

04 Reference data fusion

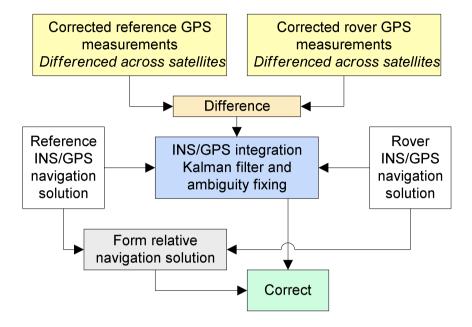
QinetiQ

01 Introduction
02 Top-level processing architecture
03 Single-node INS/GPS
04 Reference data fusion
05 Relative navigation
06 Integrity
07 Further work

08 Conclusions



www.QinetiQ.com


© Copyright QinetiQ limited 2008

05 Relative navigation

Partitioned approach

- Rover data processed if data-link interrupted
- Rover and reference can track different satellites
- Integrity monitors can distinguish between rover and reference faults

Differenced approach

Processor load ~8 times lower


See the paper for

- State selection
- INS correction synchronisation

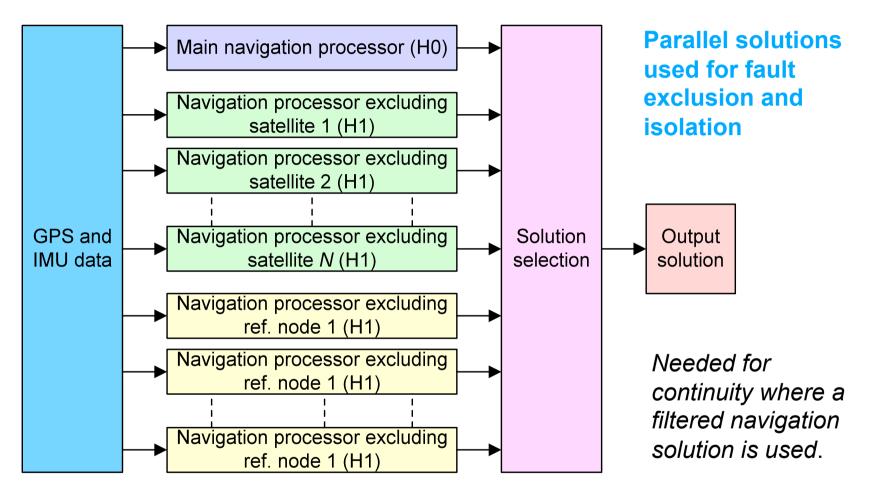
01 Introduction
02 Top-level processing architecture
03 Single-node INS/GPS
04 Reference data fusion
05 Relative navigation
06 Integrity
07 Further work

08 Conclusions

www.QinetiQ.com

© Copyright QinetiQ limited 2008

06 Integrity – Failure modes and monitors


- QinetiQ has separately tabulated:
- **Consolidated failure causes**, e.g. **Failure effects**, e.g. •
 - Satellite hardware faults
 - Multipath
 - Reference node IMU failure

- - GPS carrier ramp error
 - Unavailable GPS nav data message
 - IMU noise burst
- Connections between causes and effects fully determined ٠
- QinetiQ has identified 48 different integrity monitors for the overall • relative INS/GPS system
- Each integrity monitor is being matched to one or more failure • effect
- This will be followed by an audit to identify overlaps and gaps

QinetiQ

06 Integrity – Fault exclusion

02 Top-level processing architecture

03 Single-node INS/GPS

04 Reference data fusion

05 Relative navigation

06 Integrity

07 Further work

08 Conclusions

07 Further work

Integrity monitors

Innovative approaches identified for improving performance

Ambiguity fixing

- A robust statistical basis for calculating probability of correct fix (PCF) for ambiguity resolution is being developed
- QinetiQ is also investigating an innovative approach to the fix/ don't fix decision
- Performance modelling
- Pure analytical approach not available for a filtered navigation solution
- Pure simulation is computationally infeasible for high integrity
- QinetiQ is developing a hybrid simulation and analysis approach
- Uses a conservative overbound to the truth to obtain a lower bound on the availability

02 Top-level processing architecture

03 Single-node INS/GPS

04 Reference data fusion

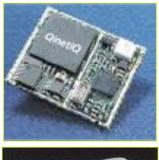
05 Relative navigation

06 Integrity

07 Further work

08 Conclusions

08 Conclusions


The preferred processing architecture for high-integrity INS/GPS distributes the processing between

- Single INS/GPS nodes aboard rover and reference vehicles
- A reference data fusion algorithm, with ambiguity correction
- A rover reference relative navigation processor

An optimum architecture for each element has been proposed

For integrity

- Failure causes and effects separately tabulated
- 48 types of integrity monitor identified
- Parallel navigation processors recommended for fault exclusion

The Global Defence and Security Experts

