H-FIELD OR E-FIELD RECEIVER ANTENNA?

Durk van Willigen^{1,3} Wouter Pelgrum², René Kellenbach¹, Arthur Helwig¹ and Gerard Offermans¹

> ¹Reelektronika, ²Exian Navigation Solutions, ³GAUSS Research Foundation

> > NAV08 / ILA 37 London, 29 October 2008

Far-field propagation

- In the far field, the E-field and H-field component of an Electro-Magnetic wave have a fixed relation
- The EM-wave can be probed equally well with an E-field or H-field antenna

Overview E-field vs. H-field

3

- □ EM signal
 - Receiver can be equipped with E-field (whip) or H-field (loop) antenna
- Far-field propagation: fixed relation between E and H
 - Performance differences between E-field and H-field antennas
 - Practical differences (for example: size, integration with GPS antenna, grounding, costs)
- Near-field phenomena: no fixed relation between E and H
 - Local interference
 - P-static
 - Power electronics
 - Engine noise
 - Local propagation phenomena (local structures)
 - TOA and positioning accuracy / Re-radiation
 - Signal strength

E-field vs. H-field in the far field

	E-field	H-field	
Low noise design	Easy	Hard	
Radiation pattern	Omni-directional	Figure-8	
Required RX processing	Easy	Harder	
Antenna form	Whip	Flat	
Integration with GPS patch	Hard	Easy	
Compass functionality	No	Yes	
Re-radiation detection	No	Yes	

Under favorable (far-field) conditions, the E-field antenna offers similar performance but with less implementation challenges

→ Legacy Loran-C uses E-field ←

In-Flight SNR comparison between E-Field and H-Field Antennas 300 E-Field

P-static susceptibility unacceptable for aviation applications \rightarrow THE motivation to go H-field \leftarrow

E-field vs. H-field: local interference (1)

E-field vs. H-field: local interference (2)

7

Local Interference	E-field	H-field		
Precipitation static	?	+ +		
Power electronics	+ -			
Engine/generator	+ -	-		
Traffic detection loop	+	_		

Some local interferers can be mitigated in the time and/or frequency domain

traffic loops, ...

Better select the best type for the given application

Local propagation phenomena (1): Sunshine Skyway bridge (Tampa, FL)

H-field positioning errors much smaller than E-field

H-field provides re-radiation detection, warning for potential position errors

Local propagation phenomena (2): Howard Franklin Bridge (Tampa, FL)

E-field positioning errors much smaller than H-field

H-field provides re-radiation detection, warning for potential position errors

Local propagation phenomena (3): 495 highway (near Boston, MA)

E-field positioning errors much smaller than H-field

Note repeatability of H-field between back and forth: it's not noise, it is local propagation!

E-field vs. H-field recap

- 11
- Aviation: P-static unacceptable, so use H-field
- Other modalities:
 - Performance considerations (interference, local propagation phenomena)
 - Integrity considerations (H-field antenna provides re-radiation detection capability)
 - Practical considerations (size, cost, compass functionality)
 - in some situations H-field more applicable, in other situations Efield
- Still a business-case for E-field eLoran !
- Question: How far can we push E-field eLoran antennas with modern technology?

From Large to Small

12

- 1950 1985
 - Large 10 ft whip E-field antennas
 - Excellent sensitivity
 - Omni-directional
 - Some bandpass filtering
 - P-static 8 8
- □ 1985 now
 - H-field antennas
 - Good sensitivity
 - Omni-directional with two perpendicular loops with two receiver channel
 - No P-statics 🙂 🙂
 - Compass 🙂 🙂
- □ 2008 now
 - Miniature E-field antennas
 - Excellent sensitivity ⁽³⁾
 - Improved P-static rejection
 - Very low-cost ⁽¹⁾ ⁽²⁾
 - Single receiver channel ⁽¹⁾ ⁽²⁾ ⁽²⁾

H-field antenna nuisances and solutions

13

Noise

High-performance double-loop amplifier

Figure-8 radiation pattern

Two orthogonally placed loop antennas, combined with a dual-channel receiver and advanced signal processing

E-field susceptibility

- Shielding and/or balancing of the loops
- Cross-talk
 - Design & calibration
- Tuning
 - Design & calibration

Problems solved !

high-quality H-field antennas are possible and are currently on the market!

Modernized LF E-field antenna

- Charge-coupled amplifier
 - Low noise, high bandwidth, large dynamic range
 - Insensitive against (salt) water splashing against antenna
 - Robust and easily protected against lightning discharges
- Costs and size
 - Low component count
 - Simple production and low-cost components
- Low-noise amplifier leads to very small antennas
 - Possible to use plastic "dome" around antenna to reduce dQ/dt and thereby P-static sensitivity*

*only effective against charged raindrops/snow, not against local discharges on airframe

E-field equi-potential lines around conduction object

15

Loran Signal Levels (MPS) MPS = RTCM SC70 Minimum Performance Standards Marine Loran-C Receiving Equipment

Loran Signal Levels + Noise 1

Active Antenna & Noise Sources

Loran Signal Levels + Noise 2

Loran Signal Levels + Noise 3

E-field Antenna Characteristics

- Minimum physical length determined by atmospheric and amplifier noise levels
 - Very useful results with antenna length of 50 mm or less
 Antennas of 200 mm show excellent noise figures
- E-field strength may increase up to 20 dB on top of masts
- Perfect omni-directional pattern
- Antenna has large bandwidth which may introduce intermodulation due to non-linearities in amplifier
- Very low components costs and easy manufacturing
- Single channel receiver reduces overall costs

Real-life Testing

Comparing Measurements

23

		H-field		E-field @ 1 m		E-field @ 5 m	
Station	Distance to Reelektronika	SS (dB)	SNR (dB)	SS (dB)	SNR (dB)	SS (dB)	SNR (dB)
6731M	546.6 km	51.0	18.3	58.7	22.1	72.5	27.7
6731X	1,028.2 km	38.4	4.0	46.1	9.4	59.9	15.0
6731Y	621.6 km	45.9	11.6	53.4	16.7	67.5	22.7
6731Z	387.5 km	55.6	21.4	62.3	25.6	76.5	31.7
7499M	387.5 km	55.6	21.4	62.6	25.9	76.6	31.8
7499X	546.6 km	51.0	18.3	58.4	21.7	72.5	27.7
7499Y	1,030.3 km	38.7	4.7	46.1	9.4	59.9	15.1

Standard Reelektronika H-field antenna as reference

E-field antenna length 20 cm mounted at 1 or 5 meter above ground

SS = Relative fieldstrength (dB)

SNR = Signal-to-Noise ratio (dB)

Some Preliminary Conclusions

H-field Antenna

Pro

- Accurate true-North Compass
- Beam Steering
- Re-radiation detection
- No ground needed
- Height independent gain
- Effective length definable

Con

- □ H-field interference
- □ Very low-noise amplifiers
- Dual-channel receiver

E-field Antenna

Pro

- □ Small size
- Very low production costs
- Omni-directional
- □ Single-channel receiver

Con

- □ Ground needed
- No re-radiation detection
- Height dependent gain
- Effective length difficult to establish
- □ P-static ?

Type selection depends on number of specific user requirements

More results to come on ILA-38 and NAV09!

d.vanwilligen@reelektronika.nl