

Characterization of P-static for Antenna and Receiver Design Standards

Robert Lilley, Aviation Management Associates, Inc. Robert Erikson, Federal Aviation Administration

FAA Cooperative Agreements 04-G-040, 06-G-001

October 28, 2008

Who we are...

- Engineer, Consultant
- ✤ Aviation Management Associates, Inc., Virginia, USA
- Formerly Northrop Grumman, Illgen Simulation, Ohio University
- → 22 years as commercial/instrument pilot
- robert.lilley@avmgt.com

- → Engineer, FAA Loran Systems Test Director
- → Research and Technology Development
- → FAA, at the W.J. Hughes Technical Center, New Jersey, USA
- Engineering Development Services
- → Navigation Team (AJP-652)
- robert.erikson@faa.gov

P-static

•••the culprits

> Discharge Mechanisms

- → Arcs
 - Fqualizing potential among airframe elements
 - Maintenance bonding, loose rivets, bad antenna mount, corrosion
- → Streamers
 - > Draining stored charge from dielectric surfaces
 - Maintenance resistive coatings, windscreen glue bypass
- → Corona
 - → Equalizing airframe and atmosphere
 - Maintenance dischargers burnt, broken; antenna coatings pinholed, sharp points uncoated.

P-static

•••stored charge reduction

ASA-3 discharger -Same goal, different design -Resistive wicks

TCO DD-2 discharger

- → -Low noise, efficient discharge at low corona threshold.
- → -Resistive; forms filter with a/c capacitance
- \rightarrow -4 μ wires

©TCO, Inc.; used with permission

The p-static effects

•••air and ground tests agree

What we observe

...drilling down to corona details

Things that might be important to a signal generator or model, for use in approval of avionics.

- Corona discharge e-field / h-field
- Discharger effect on airframe potential
- → Corona discharge rate pulse rep-rate
- → Pulse amplitude, width
- → Pulse rep-rate coherence
- → Field strength with distance

Pulse Amplitude and Width

...small changes – significant changes?

- For a given tip size, amplitude stays ~constant with current increase. \rightarrow
 - → Apparent amplitude decrease with decreasing tip size is under study.
- Pulses in 50-kHz bandwidth tend to narrow as current increases, and +to be narrower with smaller radius.
 - → May be an instrumentation effect. Under study

Pulses – Corona Rep Rate

...let's take another look at that

- Pulse repetition rate increases with current and vice versa.
 - → Current *is* pulse rate per unit time
- Smaller corona points discharge more often for a given current
 - This unexpected effect under study could affect total noise

Aviation Management Associates, Inc.

Corona Pulse Rep-Rate Coherence ...standard deviation?

- Shape of pulse interval probability distribution changes with current
- Standard deviation (STD) rises with increasing discharge current
 - ✤ STD may not be the best descriptor; distributions may not be ~Gaussian
 - Small irregularities in tip geometry may cause multimodal distributions
- Accurate description of p-static PRF coherence is important predictor of receiver effects

Aviation Management Associates, Inc.

P-static Intensity vs. Distance

...we will add absolute numbers

- → The e-field is between $1/r^2$ and $1/r^3$ –near-field
- H-field not yet observed directly with standardized antennas
 - ✤ By superposition, inferred to be some 65dB below the e-field intensity

Aviation Management Associates, Inc.

What were we *thinking*? (1)

•••status of previous predictions and preliminary conclusions

→ From 2006:

> Is the screen room useful / required? (mixed)

→ A/C as capacitor – charge storage (yes)

- > Effect on lab test results (emulates actual aircraft)
- > Wing section (voltage can exceed HVPS voltage)
- Bench-top test configuration?
 - > Direct-drive discharger or cluster as noise generator? (future)
 - LDaC to measure spectrum and capture noise data (works)
- Emulate corona streamer, arc sources (corona emphasis)
 Is it "just noise" based on current and distance to antenna? (no)

What were we *thinking*? (2)

•••status of previous predictions and preliminary conclusions

eLoran user equipment anticipated (yes...)

- → Need to design tests for proponent receivers (RTCA)
- Certification path must be sufficient, and affordable
- > Is p-static a threat to other systems? (literature-yes)

Single and Multiple dischargers

- Does a single discharger with closely-spaced ion collector emulate an aircraft in flight generating corona? (soon)
- → Is the noise from multiple dischargers additive? (soon yes?)

Ground test emulates flight conditions? (yes)

- > Must we test every installation? (under study)
- > Define test sequence (future work)

