

Standardisation of Buoy Arrangements in the Korean Navigational Fairway

S.G. Gug, M. Bransby

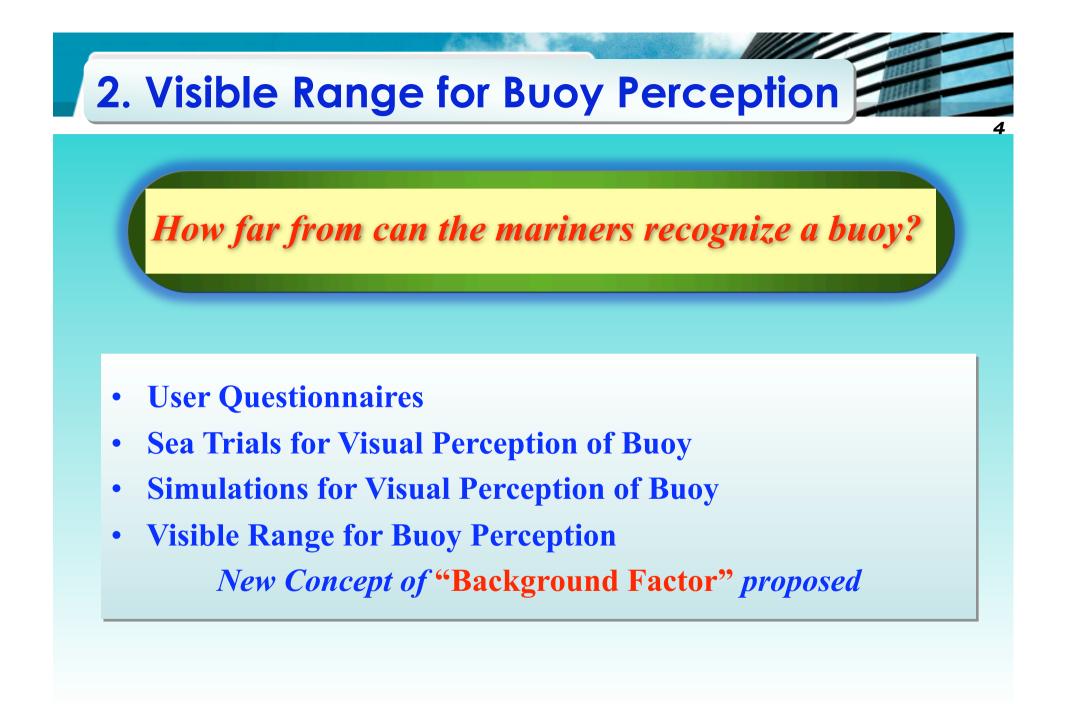
J.H. Yun, T.G. Jeong, E.B. Lee

Contents

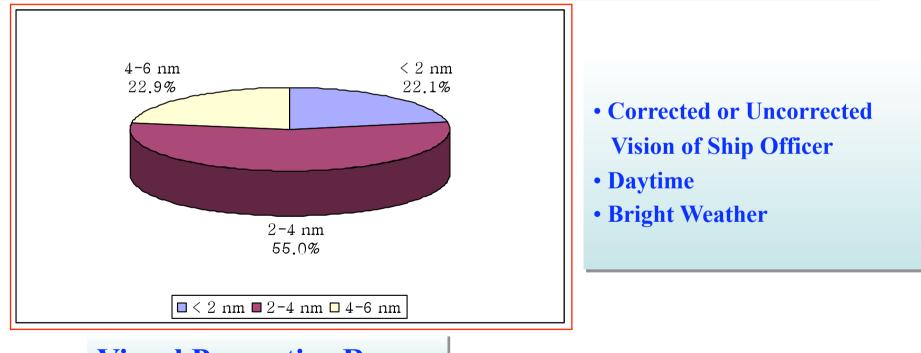
1. Overview

2. Confirmation of the Visible Range for Buoy Perception

JDEX

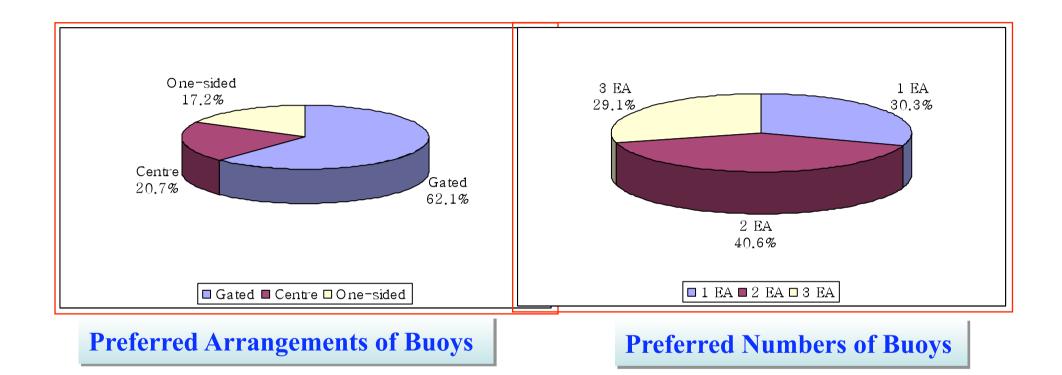

3. Standardisation of Buoy Arrangements

4. Conclusions



User Questionnaires

- Period of Survey : September November 2007
- Subjects : In/Out Fairways of 15 South Korean Trade Ports
- Effectively completed Questionnaires : 131 out of 356



Visual Perceptive Range

User Questionnaires

Preferred Interval between Buoys : 1.09 nm (2,018.7 m)

Sea Trials for Visual Perception of Buo

Background Factor :

The ratio of the standard visible range and the actual visible range Equals to 1, when;

- fine weather conditions are prevalent
- the height of the observer's eyes equals 15m
- the background for observations is sea
- red floating aids are used
- brightness contrast between the background (sea) and buoy (red): 0.81
- visibility factor: 0.74
- dynamic eye sight: 0.95

Visible Perception Range

$$l_{d,B} = E_D \times V \times C \times B \times \sqrt{\frac{A}{\tan^2 \theta} - h^2}$$

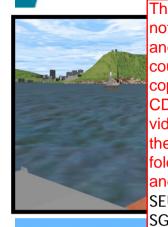
I_{d,B}: Visible Perception Range (on sea surface)
Ed: Dynamic Eye Sight
V: Factor of Visibility
C: Brightness Contrast
Background Factor
A: Cross sectional Area of Floating Aid

 Θ : Angle of Elevation (Sea surface to observer's eye) \triangleright

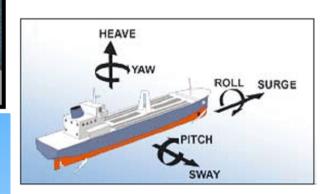
Sea Trials for Visual Perception of Buoy

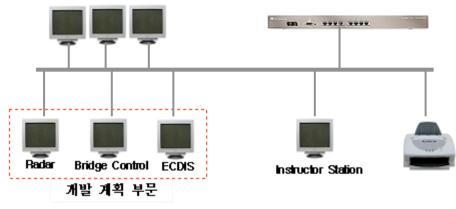
Results in Port of Ulsan

Port of Ulsan	LL-26(M)- Red	Theoretic vis ual range	Reflected upon Height of Eye	Reflected up on Visibility (× 0.74)	Reflected upon Brightness C ontrast (×0.8 1)	Reflected upon Dynamic Sight (×0.95)	Measured (m)	Background Factor
	H 15m	3867.46	3867.43	2861.90	2318.14	2202.23	2222	1.0090
	H 3m	3867.46	3867.43	2861.90	2318.14	2202.23	1296	0.5885
						Average	1,759	

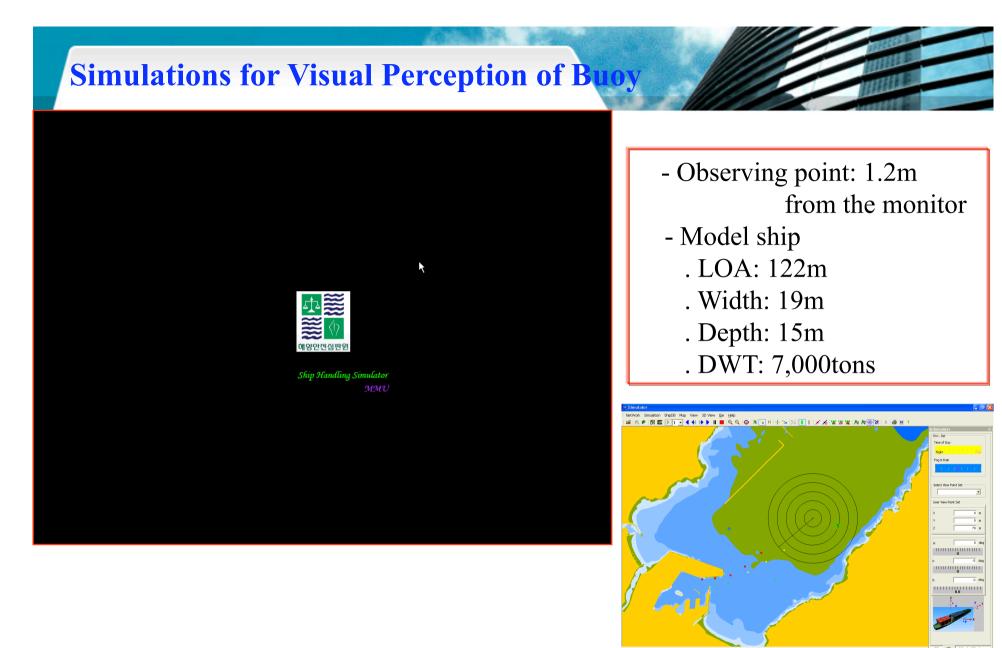

Results in Port of Busan

Port o f Busa n	h 4m	Theoretic vis ual range	Reflected upon Height of Eye	Reflected up on Visibility (× 0.74)	Reflected upon Brightness C ontrast	Reflected upon Dynamic Sight (×0.95)	Measured (m)	Background Factor
	LL-26(M)-R ed	3867.46	3867.46	2861.92	(×0.81) 2318.14	2202.23	1766.67	0.8022
	LL-26(M)-G reen	3867.46	3867.46	2861.92	(×0.65) 1860.25	1767.24	1933.33	1.0940
						Average	1,850	




Simulations for Visual Perception of Buoy

This slide would not convert to PDF and the ppt file could not be copied onto DVD/ CD. To access the video, please open the presentations folder on this DVD and click on SEUNGGI-SGG-02-MOV.avi.



Ship Handling Simulator

- Conning Console
- Visual Monitor with 3 Channels
- Mathematical Models
- Printer
- Electronic Navigation Chart (ENC) converter

Simulations for Visual Perception of Buoy

Results of Visual Perception (experienced)

Results of Visual Perception (non-experienced)

	Green (m)	Red (m)		Green (m)	Red (m)	
Group E1	1,225	1,881	Group N1	683	922	
Group E2	1,336	2,085	Group N2	1,076	1,430	
Group E3	1,683	2,650		880	1,176	
Maan	1,424	2,206	Mean	1,028		
Mean	1,81	5				

User Questionnaires : 2,021 m

Sea Trials : 2,222 m (RED, h : 15m)

Simulations : 2,206 m (RED, Experienced)

Theoretic Range : 2,202m (Dynamic)

Optimum Perception Range for Buoy

Optimum Perception Range based on the "Background Factor"

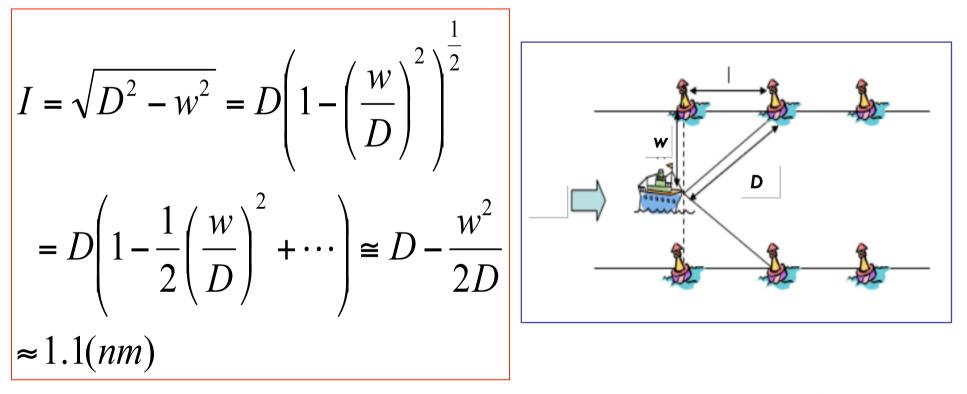
- : Optimum Perception Range
 - : Theoretical Perception Range (in standard condition) 2202.23m

Background Factor : 0.9818

$$L_{op} = \frac{\sum_{i=1}^{131} L_i}{131} = 2020.86$$

$$L_{op} = 0.918 \times l_{d,B}$$

d, B


Standard Interval between Buoys

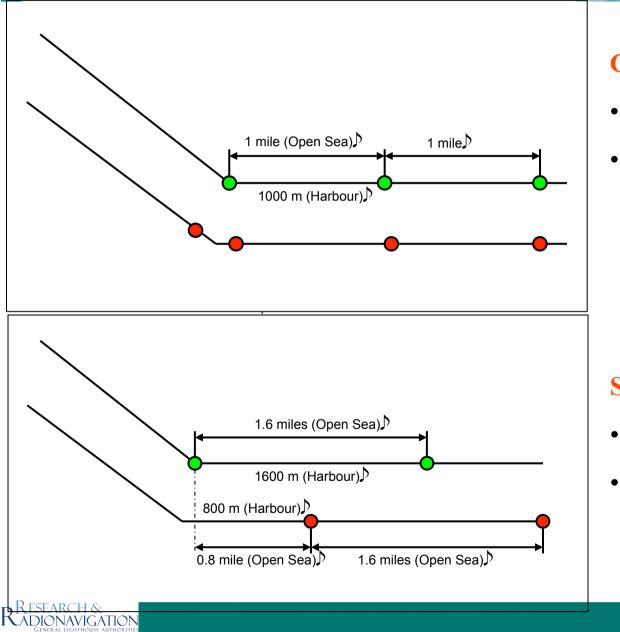
I : Standard Interval between Buoys

D : Optimum Perception Range (2,021 m)

w : ¹/₂*Width of Fairway (in case of 1,000m)

3. Standardisation of Buoy Arrangements

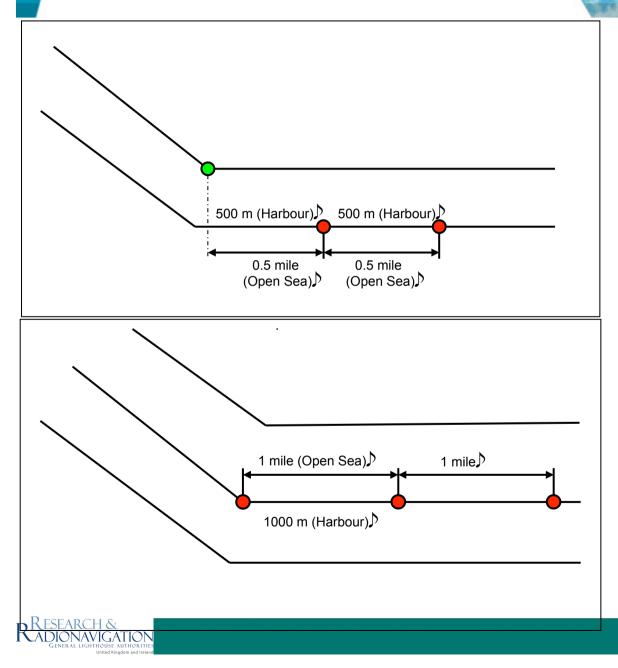
General Proposals


- Gated Arrangements of paired buoys should be utilised
- Buoys should be consecutively arranged to be perceived
- Be arranged to make equidistant and symmetrical characteristic
- Lighted Beacon can be used in order to mark dangers, change of course
- Be numbered sequentially (Numbering, Flash rhythm)

14

Standardisation of Buoy Arrangements

Gated Buoy Arrangement


- 1 nm (in Open Sea)
- 1,000 m (in Harbour)

Staggered Buoy Arrangement

- 0.8 nm (in Open Sea)
- 800 m (in Harbour)

Standardisation of Buoy Arrangements

One Sided Arrangement

- 0.5 nm (in Open Sea)
- 500 m (in Harbour)

Single Centred Arrangement

- 1 nm (in Open Sea)
- 1,000 m (in Harbour)

4. Conclusions

Standardisation for Buoy Arrangements *In South Korean Navigational Fairways*

- To determine the optimum standard arrangements for buoys, var ious attempts for the visible range of buoy perception had been d one
- After classifying the navigational fairways, a standard arrangem ent of buoys in the fairways was proposed
- Provides a substantial understanding of buoy perception and arr angements (reliable, efficient and cost effective buoyage service)
- Further work regarding the "Background Factor" needed (sea tr ials, simulations etc)

Thank you for your kind attention!

