UNIVERSITY OF WESTMINSTER

- Data File Configuration			Channel Info			
File Name:	dataG.bin		Channel #	2	■ Status	
File Type:		✓ GIOVE-A Galileo	Type Satellite SVr	GPS 15	Carrier IF Code Offset	4131900 1492
Sampling Freq	uency (Hz) 16367600	Default	× 10 ⁶			η
Carrier F Weak Signal and Wultipath Analysis						
Observation Time (sec) Using GNSScope:						
A Toolbox for End-to-End Modelling,						
Simulation and Analysis of GNSS						
Acquisition	Dwell Frequency (Hz)	500	ary 515	VI	Chie	-
Tracking			2			-
MAI	Coherent Integration Time (frames	ε) 10	o sinhadilati	maline	Alexand Meddella such	shahila huithan
Renan Kazazoglu, Alper Ucar, Ediz Cetin, Izzet Kale						

Applied DSP & VLSI Research Group - University of Westminster

Applied Research for Industry

Outline

- Introduction
- Multiple Access Interference in GNSS
- Cross-Correlation Interference Mitigation
 - Serial Interference Cancellation
 - Parallel Interference Cancellation
 - Other methods...
- Motivation

Outline

- Signal Generation in GNSScope
- Simulation Case Studies & Analyses
- Concluding Remarks
 - Future Work...

 Future civilian navigation signals:

- Multiple bands
- Multiple navigation systems

Requiring:

- Multi-mode
- Wideband

Multiple Access Interference In GNSS

- Finite length spreading codes in GNSS
 inited dynamic range
- Random travel times
 P codes not orthogonal
- Signal paths diffe

varying received signal levels

Cross-Correlation Interference Mitigation

- Serial Interference Cancellation (SIC)
 - © Reduced MAI in subsequent stages
 - Computationally intensive
 - Potential for significantly increased processing times

Cross-Correlation Interference Mitigation

- Parallel Interference Cancellation (PIC)
 - © Interferers removed in parallel
 - ⊗ Increased hardware complexity
 - Potentially, similar processing time problems could arise

Cross-Correlation Interference Mitigation

- Other methods...
 - Delayed Parallel Interference Cancellation [8]
 - $sinc(\Delta f)$ Signal Cancellation [9]
 - In-house methods

Motivation

- Enable rapid prototyping and testing of designs targeting multi-platform multifrequency global navigation systems
- Undertake signal environment and condition emulation and analysis
 - Multipath, Weak Signal and Interference Mitigation
 - Signal Obstruction and Shadowing
 - Atmospheric Effects and Fading

Signal Generation in GNSScope

GPS L1/L2C and Galileo L1/E5 Tx Model Implemented in Simulink

- Modulation Scheme
- Sampling Rate
- Roll-off Factor
- Group Delay
- Symbol Error Rate
- Rx Velocity (Doppler)
- Delay Factor (Multipath)
- K-Factor (Multipath)
- Path Loss

Signal Generation in GNSScope

- RF Filter: Band Selection (L1/L2C/E5), Q-Factor
- LNA: Gain, IIP2, IIP3, 1dB Compression Point, Noise Figure
- Mixer: IF, Gain and Phase Error
- Complex Filter: BW, Mismatch Factors
- Complex Band-pass ADC: Mismatch Factors
- Decimator: DS Factor, Group Delay, Roll-off Factor

Signal Generation in GNSScope

Applied Research for Industry

- Case A Weak
 Signal Acquisition
 - -2 Strong SVs
 - -1 Weak SV
 - Normalised plots

- Case A Weak
 Signal Acquisition
 - pre-MAI
 - post-MAI
 - SIC method
 - no PDI

- Case A Weak
 Signal Acquisition
 - pre-MAI
 - post-MAI
 - PIC method
 - PDI

- Case B Multipath Recovery

 - 1 LoS Signal
 - 3 Multipath Signals
 - In-house method

- Case B Multipath Recovery

 - 1 LoS Signal
 - 3 Multipath Signals
 - In-house method

Concluding Remarks

- End-to-End modelling environment
- Complete control over every stage of the signal path
- Controlled weak signal and multipath condition emulation

Thank You!

For further information

please visit us at:

www.advrg.wmin.ac.uk

UNIVERSITY OF WESTMINSTER

References

- 1. Galileo Open Service Signal In Space Interface Control Document, European Space Agency, European GNSS Supervisory Authority, 2008.
- 2. Global Positioning System Standard Positioning Service Interface Control Document, GPS Joint Program Office, 2000.
- 3. Tsui, J., *Fundamentals of Global Positioning System Receivers: A Software Approach*, Wiley-Interscience Publications, U.S.A., 2005.
- 4. Borre, K., et.al., *A Software-Defined GPS and Galileo Receiver: A Single Frequency Approach*, Birkhauser, Berlin, Germany, 2007.
- Fu, Z. and J. Wang, *MAI-Mitigation and Near-Far-Resistance Architectures for GNSS Receivers*, 1 Journal of Global Positioning Systems, Vol.2, No.1, p.27-34, 2003.

Cross-Correlation on GPS Acquisition in Indoor Environments, ION 2005, San Diego, 2005.

- Glennon, E.P. and A.G. Dempster, A Review of GPS Cross Correlation Mitigation Techniques, The 2004 International Symposium on GNSS/GPS, 2004.
- 8. Glennon, E.P., et.al., *Delayed Parallel Interference Cancellation for GPS C/A Code Receivers*, 12th IAIN World Congress and 2006 International Symposium on GPS/GNSS, 2006.
- 9. Norman, C.P. and C.R. Cahn, Strong Signal Cancellation to Enhance Processing of Weak Spread Spectrum Signal, U.S.A., 2004.
- *10. Wireless Communications*, T.S. Rappaport, Prentice Hall Inc, NJ, 2002.
- 6. El-Natour, H.A., et.al., Impact of Multipath and

