

SOFTWARE IN THE LOOP SIMULATION FOR SMALL AUTONOMOUS VTOL UAV WITH **TEAMING CAPABILITY**

O. Meister, N. Frietsch, J. Seibold, G. F. Trommer

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Universität Karlsruhe (TH) Forschungsuniversität • gegründet 1825

Institute of Systems Optimization

www.ite.uni-karlsruhe.de

Motivation

1 Institute of Systems Optimization

Oliver Meister

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Outline

Introduction

VTOL UAV Platform AirQuad

- Sensors and navigation
- Waypoint navigation
- Communication modules

Software-in-the-Loop (SiL)

- Environment model
- Algorithm testing

Teaming

- Communication protocol
- Formation flight
- Waypoint synchronization

Results & Conclusion

Introduction

UAV tasks

surveillance and reconnaissancecivil, security, and military applications

photogrammetric data collecting
 anti terror / homeland security
 support of rescue forces
 reduced risk for human operator

Technical aims

- platform for versatile sensors
 - **CBRN Sensors**

(Chemical, Biological, Radiological, and Nuclear)

- → autonomous flights
- dynamic mission planning
- teaming of multiple platforms

Oliver Meister

VTOL-UAV Platform

Technical data

- 4 brushless motors
- fixed pitch rotors
- maximum diameter 92 cm
- take off weight 1000g
- payload 200g
- battery powered
- operating time 25 min
- altitude < 500 m
- operating range > 5 km
- max velocity 50 km/h
- MEMS based GPS/INS

Payload options

- camera still photography, video
- dawn and IR camera
- air sample collector

• . . .

Waypoint Navigation

Waypoint setup

planning with geo-referenced maps or GIS (geographic information system)

- - position (lon, lat, and height)
 - velocity
 - time
 - payload control e.g. camera
 - point of interest
 - emergency reaction

flight telefesoftradioalypoiheffawgation:

- of Cangutagest bed
 completerations
- storeveral about alter alt points of interest
 - visualized in GIS system

Communication Links

Transceiver "TinyOne Pro"

- ISM band 868 MHz
- 21 x 38 x 4 mm, 4 grams
- Transmitting power: 500 mW
- Digital up- and downlink with up to 38.4 kbps
- Range: up to 4 km LOS
- Mesh networking

Video Transmitter

- ISM band 2.4 GHz
- 27 x 29 x 10 mm, 6 grams
- Transmitting power: 200 mW
- downlink of video data (analog PAL)
- Range: up to 1 km LOS

Oliver Meister

Outline

Introduction

VTOL UAV Platform AirQuad

- Sensors and navigation
- Waypoint navigation
- Communication modules

Software-in-the-Loop (SiL)

- Environment model
- Algorithm testing

Teaming

- Communication protocol
- Formation flight
- Waypoint synchronization

Results & Conclusion

Software-in-the-Loop (SiL)

- realistic simulation tool is
 - essential for algorithm development and testing
- easy comparison of different algorithms with ideal reference
- impact of disturbances like wind easily possible
- no special hardware required
- test of operational C-code

Motor Rotor Identification

Outline

Introduction

VTOL UAV Platform AirQuad

- Sensors and navigation
- Waypoint navigation
- Communication modules

Software-in-the-Loop (SiL)

- Environment model
- Algorithm testing

Teaming

- Communication protocol
- Formation flight
- Waypoint synchronization

Results & Conclusion

Communication Protocol

Message oriented

Formation Flight

lever arm definitions: $\vec{l_i}$

- constant with respect to absolute coordinate system (navigation-frame)
- constant with respect to relative coordinate system (body-frame)

navigation of the slaves:

 $\vec{x}_{master}^{n} = \mathbf{C}_{e}^{n} \cdot \vec{x}_{master}^{e}$ $\vec{x}_{set_{slave_{i}}}^{n} = \vec{x}_{master}^{n} + \vec{l}_{i}$ $\vec{x}_{set_{slave_{i}}}^{n} = \vec{x}_{master}^{n} + \mathbf{C}_{\Psi} \cdot \vec{l}_{i}$

smooth trajectories by using the master velocity:

Waypoint Synchronization

difficulties with synchronization during autonomous waypoint flights

- wind disturbances
- minor differences in sensor information (GPS)

decoupling would occur !

15

solution:

implemented synchronize protocol

- + synchronization with a hand shake method
- + synchronization from formations is possible

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Outline

Introduction

VTOL UAV Platform AirQuad

- Sensors and navigation
- Waypoint navigation
- Communication modules

Software-in-the-Loop (SiL)

- Environment model
- Algorithm testing

Teaming

- Communication protocol
- Formation flight
- Waypoint synchronization

Results & Conclusion

Simulation Result Teaming

Conclusion

Conclusion

Software-in-the-Loop simulation tool

- + realistic representation
- + analyzing and compare of algorithms with ideal reference
- Teaming strategies for more complex missions
 - + synchronization
 - + formation flight

Future Work

- decentralized teaming strategies
- collision avoidance
- other team members stationary observers mobile ground vehicles

Oliver Meister

Communication Rang Test

Transceiver "TinyOne Pro"

- Car based test drive
- Urban environment
- Range > 1000m NLOS

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Bluetechnix CM-BF561

Technical Data

- Dual-Core DSP
- 600 MHz clock frequency , 2 x superscalar
- 2 x 64 kB SRAM
- 64 MB SDRAM
- 8 MB Flash
- Weight 5 g
- Current consumption: 470 mA
- Dimensions: 36 x 31 x 3 mm

Laser Range Finder

Module	URG-04LX
Producer	Hokuyo
Range	0.01 – 4.00 m
Beam width	240°
Angle resolution	0.36°
Weight	160 g
Update rate	10 Hz

 -120°

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Universität Karlsruhe (TH) Forschungsuniversität • gegründet 1825

Oliver Meister

Master Ueberschrift bearbeiten

Master Ueberschrift

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

