

The Next Generation LF Transmitter and its Impact on Loran, eLoran, and Tactical (e)Loran Systems.

Presented by Charles Schue

With thanks to Nautel, Inc. & Symmetricom, Inc.

News

Sep 18, 2008

Bill Woodward presented a paper that he co-authored with Rich Webb entitled "Integrating Monolithic ...

We are the exclusive worldwide Value Added Reseller of Nautel's (e)Loran products.

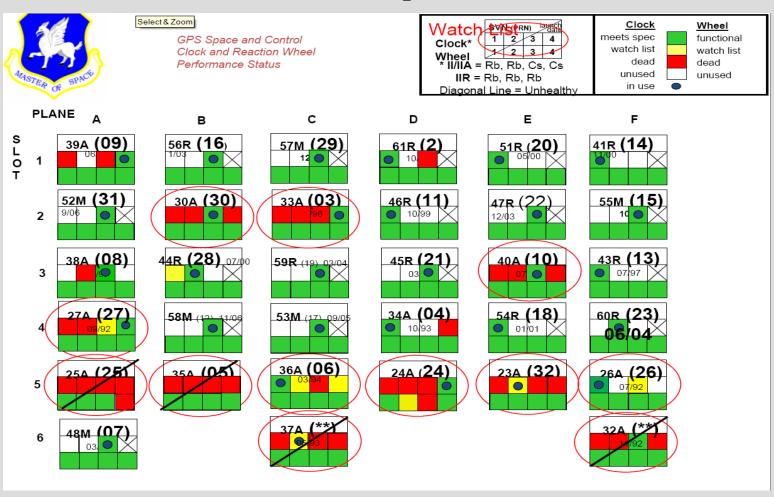
What is the problem?

U.S. Air Force Space Command Commercial

What is the problem?

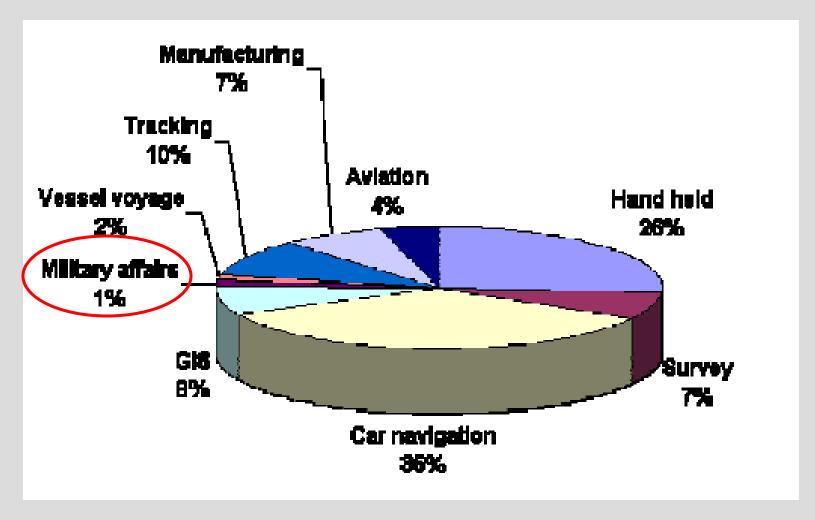
Constellation Status Summary

Total SVs in Category


Changes Since Last Update

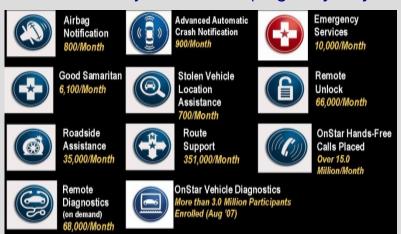
- 19 (+0) SVs past design life
- 15 (+0) SVs past pre-launch mean life estimate (MLE)
- 18 (+0) SVs one component away from nav mission failure
- 8 (+0) SVs one component away from bus failure
- Anomaly Summary
 - SVN 25 set unhealthy
 - SVN 35 set unhealthy

Unclassified – Sep2008


What is the problem?

Unclassified - Sep2008

What is the "market"?



Real World GPS Case Study | President, GM OnStar | Oct 2007

"GPS location & clock are critical enablers for all OnStar services"

OnStar Monthly interactions (Avg. May-July '07)

In addition, OnStar uses GPS to be an effective advocate against crime

- Targeted Amber alert with the National Center For Missing Children
- Stolen Vehicle location
- GM and Red Cross partner to provide information to those in crisis

OnStar currently has over 5 million active subscribers

OnStar will be standard across all General Motors retail vehicles in the U.S. & Canada (~4 Million per year)

What are the solutions?

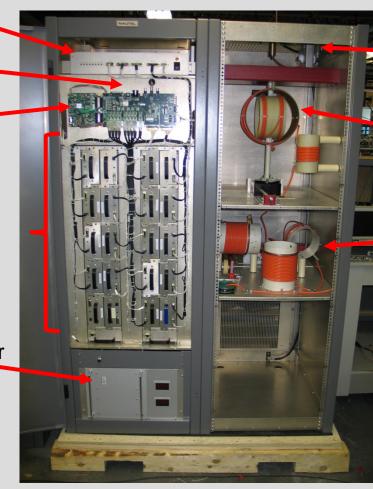
- Loran
 - PNT service in use in many parts of the northern hemisphere
- eLoran
 - PNT&D service
- Tactical (e)Loran
 - Deployable (e)Loran PNT&D service

Are you prepared?

Why not?

\$\$?

Introducing the Next Generation LF (e)Loran Transmitter


Low Voltage Power Supply

Control Board

Exciter

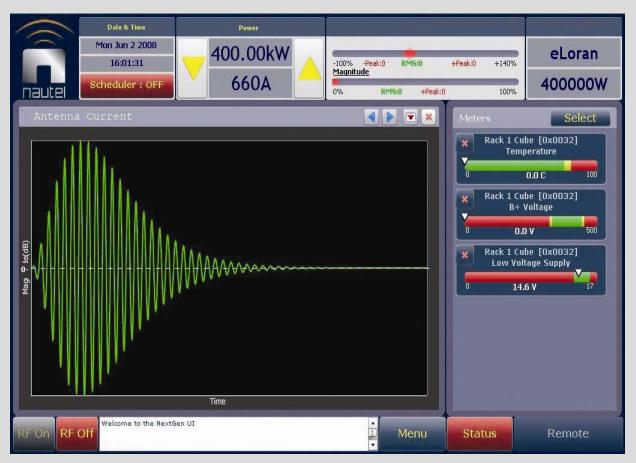
Power Amps (16 active, 2 spare) and Resistive Damping Modules (1 Active, 1 Spare)

375V Power Supply

Antenna Current Probe

Antenna Tuning

Harmonic Filter



RF amplifier

Advanced User Interface (AUI)

Proof-of-Concept Transmitter in Halifax, NS - April 2008

Proof-of-Concept Transmitter in Wildwood, NJ - May 2008

First pulses into 625-foot TLM: 1100, May 12, 2008

Next Generation LF (e)Loran Transmitter (Conceptual)

480 kW ERP Production Model **NL Series** Transmitter (<u>Maximum</u> 1.84 m H x 2.88 m W x 1.12 m D)

- Dual exciters and controllers
- Redundant power supplies
- Advanced User Interface (AUI) with touch screen display and web-enabled remote control/monitoring capability
- Automatic antenna tuning and pulse optimization
- "Hot swappable" power amplifiers for on-air serviceability
- Reserve power amplifiers allows soft fail capability

- Modern/State-of-the-Art design
- Allows use of current and proposed modulation techniques
- Highly stable pulse timing
- Greater than 67% efficient AC in to RF out
- Pulse Repetition Rates in excess of 600 PPS
- MTTR 1 hour
- LRU diagnostics & fault monitoring / Built-in analytics

NAV08/ILA37 Conference

- ↓ size
- ↓ weight
- ↓ input power
- ↓ maintenance
- ↓ installation time
- ↓ installation personnel
- ↓ installation materials
- **↓ HVAC**
- ↓ price
- ↓ manufacturing time
- ↓ logistics tail
- ↓ training
- ↓ staffing
- ↓ shipping
- ↓ sparing
- ↓ ...

- ↑ efficiency
- ↑ reliability (MTBF)
- ↑ availability
- ↑ continuity
- ↑ accuracy
- ↑ operational ease
- ↑ PPS
- ↑ soft fail capability
- ↑ stability
- ↑ diagnostics
- ↑ analytics
- ↑ flexibility
- ↑ modulation types
- ↑ modulation speed

- Take cost out of the system
 - apply new, cost effective technology
- Reduce system risk
 - replace legacy equipment that is costly to operate and maintain
- Increase system agility
 - install technology capable of today's enhancements
 - include some level of future-proofing
- Win the Dr. Sally Basker "X-Prize" for innovative public/private applications of "high-speed" eLoran data service

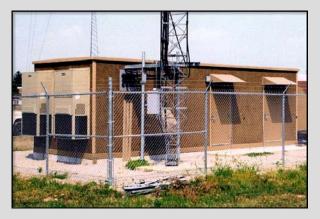
So, how do we ...

- Take cost out of the system,
- Reduce system risk, and
- Increase system agility?

22

Goal: destination / Build: station

Popular Mechanics Magazine Photo


Goal: provide a service / Build: site

April 2000 Solution

Thermo Bond

Miller Building Systems

Shelter One

October 30, 2008

NAV08/ILA37 Conference

Yesterday's Systems

USCG Photos

- •Larger SWAIP
- More expensive
- More manpower intensive

Yesterday's Systems

USCG Photos

- •Large SWAIP
- Expensive
- Manpower intensive

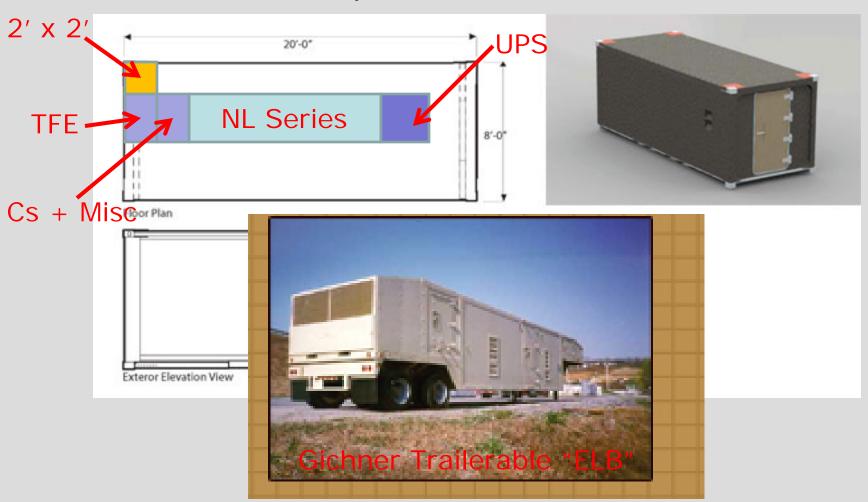
Today's Systems

USCG Photos

- Large SWAIP
- Expensive
- •Less manpower intensive

Today's Systems

GLAs & VT Communications Photos


- Smaller SWAIP
- Less expensive
- •Less manpower intensive

28

Tomorrow's Systems: (e)Loran-in-a-Box (ELB)

Tomorrow's Systems: NL Series-based (taking orders today)

6' H x 2' W x 2.5' D

Maximum 6' H x 12' W x 3' D

Some Applications

- Augmentation to improve poor geometry
- Determining optimum station/site location
- Testing station relocation
- Component solutions (crisis contingency; temporary site)
- Additional service/sites low to middle latitudes
- Additional service/sites high latitudes
- System backup (R21, GMDSS, NAIS VTS, SCC)
- Tracking and monitoring (convicts; telematics)
- System replacement (TACAN)
- High security event PNT&D (Presidential Inauguration)
- Southern hemisphere

NAV08/ILA37 Conference

www.ursanav.com

problems into solutions...ideas into products

