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ABSTRACT 
 
GPS receivers are widely used in navigation and 
positioning, due to the global availability of GPS 
signals, its low cost and low power consumption. 
However, it does not work sufficiently in all signal 
environments. This raises the need to integrate GPS 
with other sensor systems (for instance, the inertial 
navigation system (INS)) to have a robust, continuous 
navigation solution regardless of the environment. 
The combination of the complementary 
characteristics from the GPS and INS provides 
overall an enhanced navigation performance. With 
the emergence of the micro-electromechanical 
systems (MEMS) based low-cost inertial 
measurement unit (IMU), cost-effective GPS/INS 
integrated navigation systems became of high 
interest. In this paper, the system performances of 
loosely- and tightly-coupled low-cost GPS/INS 
integrations are analyzed. An adaptive hybrid low-
cost GPS/INS integration system architecture is 
proposed. Simulation and test results are presented 
based on using an RF GPS signal simulator and 
synthetic IMU data. 
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INTROUDCTION 
 
GPS/INS integration architectures have been 
introduced in literatures (e.g., [1], [2], [3]), and they 
are generally classified as loosely-coupled, tightly-
coupled and deeply-coupled (or ultra-tightly coupled) 
integration. The loosely-coupled integration system 
uses the position and velocity measurements as 
inputs to the integration algorithm. In a tightly-coupled 
system, the pseudo-range and pseudo-range rate 
raw measurements are used to correct the state of 
the navigation filter. In the deeply-coupled integration, 
not only the GPS aiding of INS, but the INS aiding of 
GPS tracking loops is implemented. In the loosely-
coupled integration considered in this paper, the 
least-squares estimator has been used for the GPS 



receiver, instead of using an 8-state Kalman filter to 
prevent from the cascading filtering problems (details 
are given in [1], [2]) caused by mutual feedbacks 
from two Kalman filters. When using the least-
squares estimator, it has the advantage of simplicity 
with low online computational burden, and a 
completely independent GPS navigation solution. But 
signals from at least four satellites are required to 
obtain a GPS navigation solution. For the integration 
Kalman filter, the accurate error covariance 
information is needed for the optimal estimation, but 
it is not available from the least-squares estimator. 
 
The GPS/INS tightly-coupled integration, which 
performs comparable or better than its loosely-
coupled counterpart in terms of both accuracy and 
robustness, is implemented by a centralized Kalman 
Filter. For the centralized integration, the sensor raw 
measurements rather than the navigation solutions 
are input to the integration Kalman filter. All 
systematic errors and noise sources of the navigation 
sensors are modelled in the same filter. This ensures 
that all error correlations are accounted for, all 
measurements are optimally weighted, and the full 
information is used to estimate each error [1]. 
However, all sensors need to be modelled correctly, 
and the system must be carefully designed. The 
main disadvantage of centralized integration is that it 
requires a high processor load, and there are no 
available independent subsystem navigation 
solutions. Sequential processing normally can be 
used to avoid the matrix inversion in the calculation 
of the Kalman gain to reduce the online 
computational load. But generally, it is not possible to 
optimally process the integrated measurements (for 
instance, the carrier phase Doppler shift from PLL) 
sequentially without estimating additional states 
which are related to the integrated process noise 
over the integration interval [4]. The methods of 
optimal sequential processing of the integrated 
measurements without adding additional states can 
be found in Ref. 4. Currently they are not considered 
in this adaptive hybrid system. 
 
From the former analysis, we know that for the 
integration with low-cost MEMS-based IMUs 
(especially for the sensors with the price tag about 
100-200$), the filter update rate (or we say, the IMU 
error calibration rate) is important for the accuracy of 
the integrated navigation solutions. The INS 
estimates need to be corrected by the GPS 
measurements due to its fast position drift over time. 
It is mainly caused by the gyro bias error (the large 
turn on biases combined with high sensor noise), 
because the gyros bias will cause a linear increase 
tilt error and make the wrong projection of the gravity 
on to the horizontal plane as acceleration error. After 
double integrations, it becomes the position drift [5].  
 
 
 

ADAPTIVE HYBRID NAVIGATION SYSTEM 
 
In order to improve the accuracy and robustness of 
the navigation solution, and optimize the processing 
efficiency, an adaptive hybrid integrated navigation 
system has been designed.  
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Fig. 1: Framework of the low-cost GPS/INS adaptive 

hybrid navigation system. 
 
In this proposed adaptive hybrid low-cost GPS/INS 
integration system (the architecture is shown in 
Fig. 1), the loosely-coupled integration (least-squares 
estimator with 15-state Kalman filter) is set to be the 
default mode (as shown in Fig. 2). That is, when the 
receiver operates in open sky condition, a high filter 
recursive rate and faster response to IMU errors can 
be achieved (1 Hz filter update rate).  
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Fig. 2: Default mode 

When the system moves under challenging signal 
conditions, the tightly-coupled integration (17-state 
Kalman filter) will be triggered with the filter initialized 
by the loosely-coupled integrated navigation solutions 
(as shown in Fig. 3).  
 
In the Kalman filter used for the GPS/INS integration, 
state propagation and update occur at the high rate at 
which the IMU measurements are available (for 
instance, in our case at 100 Hz), but the Kalman gain 
calculation, covariance propagation, and update 
where the bulk of Kalman computations are 
performed at a much lower rate. The computational 
burden is further determined by the order of the 
Kalman filter state space and observation models. 
For the tightly-coupled integration, we set the filter 
update rate to be 0.5 Hz due to its high online 
computational load. 
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Fig 3: Enhanced mode 

 
A switching mechanism between the loosely- and 
tightly-coupled integration is used which is based on 
the number of tracked satellites. In the conducted 
simulations in this paper, the switching happens 
when the tracked satellites number is below 4.  
 
The external attitude and heading reference system 
(AHRS) is optional. This redundant attitude 
information could be derived from horizontal 
reference instruments, and the heading information 
from, for instance, a magnetic compass. The attitude 
and heading measurements derived from a low-cost 
GPS receiver with single antenna are challenging. 
However, higher quality real-time velocity information 
(from carrier phase Doppler shift), especially when it 
is available at high sample rates such as 10 Hz has 
the potential for precision guidance [6]. 
 
SYSTEM ERROR STATE SPACE MODEL 
 
The low-cost gyroscopes are usually not able to 
sense the Earth’s rotation, so that the gyro-
compassing for alignment in azimuth is not feasible. 
Transport rate and Coriolis terms can be neglected in 
the strap-down processing.  
 
In the loosely-coupled GPS/INS integration 
architecture, the following n-frame error state system 
model is used for the integration Kalman filter: 
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Where I and O represent a 3×3 identity and 3×3 zero 
matrix; Δx and Δv are position error and velocity 
error vectors; Δψ is the attitude error vector; Δba is 
residual accelerometer biases; Δbω is residual 
gyroscope biases.  
 
The skew-symmetric sub-matrix F23 contains the 
specific force components (transformed to the n-
frame) 

, ,

23 , ,

, ,

0

[ ] 0

0

n n
ib d ib e

n n n
ib ib d ib n

n n
ib e ib n

a a

F a a

a a

⎡ ⎤−
⎢ ⎥
⎢ ⎥= × = −
⎢ ⎥
−⎢ ⎥⎣ ⎦

a  (2)

 
The frame rotation matrix from body- to n-frame is  
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with c = cos and s = sin.  
 
The biases are simply modeled as random walk 
processes 

;
aa b bωωΔ = Δ =b n b n  (4)

where nba and nbω are white Gaussian noise vectors. 
 
The discrete-time analogue is expressed as 

( 1) ( ) ( )k A k k+ =ξ ξ  with 
( )A k I F T= + ⋅  (5)

where T is the step size of the discrete Kalman filter.  
 
In the loosely-coupled integration, the measurement 
vector consists of the differences between GPS and 
INS derived position and velocity, respectively. When 
the redundant attitude information is available, the 
observation matrix is given as: 
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where the time index and the lever-arm effect have 
been neglected for simplicity. 
 
In the tightly-coupled integration the measurement 
vector consists of the differences in predicted and 
measured pseudo-range and pseudo-range rates, 
respectively, and with respect to satellite number m. 
The part of the observation matrix that maps 17 state 
vector components (including clock bias and drift) into 
observation space is given as 
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 (7) 
where ( ),m n

tl  is the unit vector from receiver to 
satellite m. The total observability matrix comprises 
2M rows assuming that M satellites are in view. 
Similarly to (6), it can be simply augmented by three 
more rows to incorporate additional attitude 
information. 
 



SIMULATION SETUP 
 
For the following experiments, a hardware-in-the-
loop system has been used for the derivation of GPS 
based measurements. The angular rate and specific 
force measurements (as obtained from a low-cost 
IMU) have been simulated using the parameters in 
Table 1. The system consists of the RF GPS signal 
simulator NavX-NCS from Ifen GmbH and Novatel 
DL-4 plus GPS receivers. 
 
Table 1: Error characteristic of the low-cost MEMS-IMU 

Gyroscope (Angular rates) 
Bias stability [°/h] 360 
Scale factor [ppm] 10000 
Noise (ARW) [°/√h] 3 
Accelerometer (specific forces) 
Bias stability [μg] 2400 
Scale factor [ppm] 10000 
Noise (VRW) [μg/√Hz] 1000 

 
A circle level path with constant velocity of 20 m/s is 
modeled by using the RF GPS signal simulator. Only 
the heading angle changes. The roll and pitch are 
constant throughout the test. 
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Fig. 4: Trajectory in ENU navigation frame 

 
Nominal parameters of the trajectory are given in 
Table 2. 
 
Table 2: Nominal parameters for the following experiments 

Trajectory 
Nominal Velocity  20 m/s 
Circle Center Position  
(LLH) [ ]51 N 8 E 360m TLLH = ° °x  

Circle Radius 1000 m 
Start Time (UTC) October 29, 2006, 00:11:27 
Duration 300 s 
GPS measurements 
Measurement rate 5 Hz 
Positioning method Single-point positioning  

Error modeling 
Tropospheric and 
 ionospheric delays are 
 estimated and corrected for.

Satellites in view 9 (unless stated otherwise) 
Elevation angle ≥ 5° 
IMU measurements 

Update rate 100 Hz 
Error modeling cf. Table 1 
Integration 
Filter update rate 1 Hz, 0.5 Hz 

 
The GPS/INS integration is accomplished by using a 
Kalman filter and the aforementioned state space 
modeling. An ideal time-synchronization has been 
assumed. The problem of time delayed 
measurements has been neglected. Flexure and 
vibrations have not been taken into consideration.  
 
SIMULATIONS AND RESULTS 
 
Scenario 1: Loosely-coupled integration (with 1 Hz, 
0.5 Hz filter update rates) 
 
In this scenario, the low-cost MEMS-based IMU is 
loosely-coupled integrated with GPS at two filter 
update rates (1 Hz, and 0.5 Hz). Practically, for 
loosely-coupled systems, filter update intervals of 
10 s are commonly used [1]. But with using the IMU 
parameters (with the price tag about 100-200 $) as 
shown in Table 2, higher filter update rate is required. 
The integration is done by using a 15-state Kalman 
filter to exploit the GPS and IMU position and velocity 
measurements, respectively. As mentioned before, 
we use the least-squares estimator for deriving the 
GPS based position and velocity measurements 
instead of using an 8-state Kalman filter to prevent 
the filter cascading problems. 
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Fig. 5:  1 Hz filter update rate 
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Fig. 6:  0.5 Hz filter update rate 

 



The best GPS/INS integrated navigation system 
performance is obtained at 1 Hz filter update rate, as 
shown in Fig. 5. 
 
Scenario 2: Tightly-coupled integration 
 
2-1: Tightly-coupled integration with 0.5 Hz filter 
update rate 
 
From Fig. 7, we obtained similar results as in the 
previous scenario. Due to the higher real-time 
computational burden with using the centralized 
Kalman filter for integration, IMU error calibration with 
1 s interval is quite challenging for real-time 
applications, especially when more satellites are 
tracked. The real-time IMU error correction with 2 s 
interval is more practical. But if we calibrate the IMU 
error with longer interval, the system performance is 
not acceptable. 
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Fig. 7: 0.5 Hz filter update rate 

 
For tightly-coupled integration, the proper 
initialization of the integration Kalman filter is 
important (large position errors at the beginning of 
Fig. 7). If the chosen initial state estimates are not 
close to the true states, slow convergence might 
result. 
 
2-2: Tightly-coupled integration with different number 
of satellites in view (with 3, 4, 9 satellites) 
 
For good signal conditions, similar navigation results 
will be obtained with using the loosely- and tightly-
coupled GPS/INS integration. But as soon as less 
than 4 satellites are in view, the tightly-coupled 
integration is superior because the information 
coming from the remaining satellites is still 
considered in the tightly-coupled integration filter (as 
shown in Figs. 8 and 9). Nevertheless, the 
positioning accuracy and precision depends on the 
number of visible satellites and their geometrical 
distribution. Fig. 8 presents the position errors 
achieved when 3, 4, or 9 satellites are visible. Fig. 9 
presents the corresponding velocity errors. 
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Fig. 8: Position errors and their dependencies on the 

number of satellites in view 
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Fig. 9: velocity errors and their dependencies on the 

number of satellites in view 
 
Regarding the velocity error, the effect of GPS signal 
outages is smaller than that on the position. The 
reason is that, the Doppler measurements from 
carrier tracking loop are used to derive the velocity 
estimates. 
 
2-3: Tightly-coupled integration with GPS signal 
outages (3 satellites in view) 
 
In this simulation, we assume that after 40 s for 80 s 
and after 160 s for 20 s only 3 satellites are in view. 
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Fig. 10: System performance under GPS signal 

outages (3 satellites in view) 
 
As shown in Fig. 10, in long time GPS signal outage 
(for instance, 80 s for only 3 satellites in view), with 



using the low-cost MEMS-based IMU, the system 
positioning errors are bounded, but under short time 
GPS signal outage (for 20 s), the positioning errors 
seem to be unbounded, only its  drift over time can 
be observed. 

2-4: Tightly-coupled integration with high grade IMU 
under 3 satellites in view 

A tactical grade IMU is used and the parameters are 
given in Table 3. 
Table 3: Error characteristic of the tactical grade IMU 

Gyroscope (angular rates) 
Bias stability [°/h] 1 
Scale factor [ppm] 200 
Noise (ARW) [°/√h] 0.01 
Accelerometer (specific forces) 
Bias stability [μg] 50 
Scale factor [ppm] 500 
Noise (VRW) [μg/√Hz] 200 

 
With using the high grade IMU, the Kalman filter will 
be tuned to give more weights on the IMU 
measurements, especially when less than 4 satellites 
are tracked. In this simulation, we assumed a 100 
s  GPS signal outage after 20 s, with only 3 satellites 
in view. 
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Fig. 11: System performance when giving more 
weights on the IMU measurements. 

From Fig. 11, we see that the position error of the 
single-point GPS positioning is the dominant part of 
the total error rather than the drift from the IMU, and 
the INS estimates can be used to smooth the noisy 
GPS positioning results. By  further tuning of the 
Kalman filter, better navigation solutions with using 
the tactical grade IMU can be expected. 

 
Scenario 3: Adaptive hybrid integrated navigation 
system 
 
In this simulation, we also assume that after 20 s for 
100 s, only 3 satellites are visible.  
 
As shown in Fig. 12, for a long GPS signal outage 
(for 100 s), the tightly-coupled integrated position 
errors are bounded due to the IMU error calibration 
from the remaining tracked satellites. With using the 
adaptive hybrid integrated navigation system, for the 
first 20 s with 9 satellites in view, the system is 
working at loosely-coupled integration mode with 
using least-squares estimator for the GPS receiver at 
1 Hz filter update rate. No convergence problems 
appear for the adaptive system. This is also true 

when the carrier is navigating from bad signal 
condition to an open sky signal condition. 
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Fig. 12: Comparison of the results (tightly-coupled 
integration system vs. an adaptive hybrid integrated 

navigation system) 

After 20 s for 100 s, only 3 satellites are in view, and 
the adaptive system switches to the tightly-coupled 
integration mode with 2 s filter update intervals. In 
this challenging signal condition, the system has the 
same characteristics as the normal tightly-coupled 
integrated navigation system. 

After 120 s, 9 satellites are again in view. The 
corresponding error parameters for both navigation 
systems are listed in Table 4. 
Table 4: Position and velocity errors (after 120 s) of tightly-
coupled and adaptive hybrid navigation system 

Tightly-coupled Integrated navigation system 
Position Error (mean/sigma) 2.4368/0.6665 (m) 
Velocity Error (mean/sigma) 0.1378/0.0777 (m/s)
Adaptive hybrid navigation system 
Position Error (mean/sigma) 2.3524/0.4756 (m) 
Velocity Error (mean/sigma) 0.1181/0.0680 (m/s)

The same experiment has been repeated for 10 times, 
and the mean values are given in Table 5: 
Table 5: Mean position and velocity errors after 10 runs 

Tightly-coupled Integrated navigation system 
Position Error (mean/sigma) 2.4274/0.6423 (m) 
Velocity Error (mean/sigma) 0.1278/0.0717(m/s)
Adaptive hybrid navigation system 
Position Error (mean/sigma) 2.3435/0.4556 (m) 
Velocity Error (mean/sigma) 0.1055/0.0611(m/s)

We see that with using the adaptive hybrid navigation 
system, the advantages from the loosely-coupled 
integration (lower real-time computational load) and 
the tightly-coupled integration (INS estimates 
correction when fewer than 4 satellites are in view) 
are combined, yielding an overall enhanced 
navigation performance. 

Further experiments are made with using a tactical 
grade IMU. Comparable system performances are 
obtained from the tightly-coupled and adaptive hybrid 



navigation system. This is due to the fact that the 
single-point GPS positioning error will be the 
dominant part instead of the drift of IMU. One 
improvement from the adaptive navigation system is 
that there is no special requirement for choosing the 
initial start point for the integration algorithm, 
because the system uses a least-squares estimator 
for the GPS in the loosely-coupled integration. 
 
CONCLUSION 
 
When a low-cost MEMS-based IMU is used, the 
integration Kalman filter update rate is an important 
factor regarding the accuracy of the system position 
and velocity solutions. Two factors are limiting the 
filter update rate (IMU error calibration rate). The first 
one is the real-time computational burden of the 
integration Kalman filter. The second one comes 
from the prevention of time-correlated GPS 
measurements which may cause filter divergence. 
There is a trade-off between correctly choosing the 
Kalman filter update rate and the Kalman Gain. For 
low-cost MEMS-based IMU, a 1 s or 2 s error 
correction interval is required. In order to improve the 
system navigation solution’s accuracy and 
robustness, to minimize the system complexity, and 
to promote the system processing efficiency, an 
adaptive hybrid integrated navigation system can be 
a solution. 
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