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Abstract—The estimation of a vehicle’s dynamic state is one
of the most fundamental data fusion tasks for intelligent traffic
applications. It has been shown that the quality of GNSS based
systems can be improved by the usage of Smoothed Pseudorange
Double Differences. This paper presents a decentralized data
fusion system, which uses a general method for incorporating
information from several connected nodes. Both, local and trans-
mitted estimations are represented by particle sets. Simulations
show that the position estimate for every vehicle is is in terms
of accuracy superior compared to the GNSS solution.
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I. INTRODUCTION

Determining the position of a vehicle is an important task
in Intelligent Transportation Systems (ITS), both for vehic-
ular safety systems and navigation purposes. Despite of the
extensive research which has been carried out to improve the
performance and reliability of positioning systems, there are
still a lot of unsolved problems. In particular, a high position
accuracy can with today’s technologies only be achieved by
using expensive equipment (e. g. dual frequency receivers or
vehicle sensors).

On the other hand, great effort in ITS research is being
spend on Cooperative Systems which are based on Vehicle-
2-Vehicle- or Vehicle-2-Infrastructure-communication, respec-
tively. Numerous research projects on European or national
level are focusing on this topic in order to improve traffic
safety and efficiency. Thus, this paper proposes an approach
to exploit cooperation between vehicles in order to improve
positioning accuracy.

The idea is based on the exchange of GNSS pseudo ranges
between several vehicles via an existing communication link.
Provided that the same subset of satellites is visible for all
vehicles, systematic errors can be partly compensated and,
thus, accurate relative position vectors between the vehicles
can be determined. Having performed those calculations, all
available information (i. e. GNSS navigation solutions, relative
position vectors, and velocities/yaw rates measured by vehicle
on-board sensors) can be fed into a sophisticated data fusion
algorithm. The algorithm, which will be presented in detail in
this paper, is based on the Particle Filter framework. It assumes
that all vehicles are moving according to the Constant Turn
Rate and Velocity motion model. With the above-mentioned

measurements, it is able to determine a position estimate for
every vehicle which is in terms of accuracy superior compared
to the GNSS solution.

The paper describes the details of the cooperative position-
ing approach, in particular of the decentralized data fusion
algorithm. Results of simulations are presented and discussed.
Furthermore, the influence of different limitation factors such
as limited bandwidth or disturbed information from one of the
vehicles will be analyzed. Thus, the paper contributes to the
further improvement of road navigation systems.

The paper is organized as follows: Section II gives a rough
overview of the overall system architecture, section III shows
detailed explanations of the Networked Information Fusion
followed by simulation results and conclusions.

II. SYSTEM ARCHITECTURE

The system presented in this paper is a decentralized net-
work of independent nodes, which exchange their knowledge
about their own position. Hence, none of the nodes knows
about the whole network state and yields an estimation of
its own state only. Each node of the decentralized data fusion
system is structured as shown in figure 1. Several local sensors
like GNSS, yaw rate, and velocity are fused in a “traditional”
way using the non-linear Constant Turn Rate and Velocity
(CTRV) motion model, which would lead to localization errors
as shown in [1]. Additionally, Smoothed Pseudorange Double
Differences [2] and received localization estimations from
connected nodes are used to reduce the estimation error. After
incorporating new local sensor information, the estimation can
be transmitted to the connected nodes.

The main difficulty arises from the fact that the information
flowing through the network are not independent and therefore
correlated, which would lead to inconsistent and erroneous
estimation results if these correlations would not be treated [3].
Section III gives an overview of several consistent data fusion
methods proposed in literature and a detailed explanation of
the method used in this paper.

III. NETWORKED INFORMATION FUSION

When doing Networked Information Fusion, one of the main
decisions to make is whether to use centralized or decentral-
ized methods for combining observations and estimations from
different nodes of the network. While centralized methods
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Figure 1. System Architecture

yield some advantages like implicit handling of cross correla-
tions and reduced computational load at nodes by delegating
the main effort to the master, decentralized methods promise a
higher scalability and robustness without the need for a master
instance or additional infrastructure.

In [4], a centralized localization approach is presented,
where correlations between nodes are implicitly handled by
one large state space and the according linear observation
matrix.

In [5] and [6], a decentralized approach for cooperated
localization is shown, where each vehicle maintains a large
state vector containing the estimations of all connected nodes.
These state is updated using local sensor information only
and sent to the connected nodes. Additionally, each vehicle
holds another large state vector which is updated with the
information received by other nodes, but not sent back to the
network.

When using decentralized methods, one has to be aware
of correlations between estimations from different nodes as
they might contain knowledge from other nodes, which has
to be considered while incorporating a received estimation in
the local one. In [3], [7], and [8] a consistent decentralized
method known as Covariance Intersection is shown which
provides a way of consistently combining two covariances
even if there is no knowledge about the cross correlations. As
the name indicates, only Gaussian estimation representations
can be fused.

A more general solution was introduced by [9] and [10],
where discrete particle sets represent the estimations at each
node, which enables the ability for representing almost every
distribution and non-linear state and observation transitions
without linearization.

A. Filter Technology

Particle Filters belong to the class of Bayes filters which
recursively estimate the state xk of a certain system from one
time step tk to the next tk+1. While Kalman Filters represent
the probability density function (PDF) through parameters
(mean and covariance) Particle Filters are based on Sequential
Monte Carlo Methods (SMCM) and therefore heavily rely on
samples also called particles. Instead of the Unscented Kalman
Filter [11] which represents the PDF with a fixed number of

deterministically sampled particles, Particle Filers use a large
number of randomly generated samples to represent the PDF
or density of the system. Due to the use of this non-parametric
representation Particle Filters are very suitable for non-linear
and non-Gaussian applications.

A typical particle filter (SIR) algorithm consists of the
following steps:
• sampling step: generation of new particles where each

particle is drawn from an importance function π(x).
• update importance weights: calcuation of partciles

weights ω(i).
• resampling step: draw M particles x̃(i) from set Sk

according to resampling alogrithm.
First of all a representation of a system and measurement

model

xk = f(xk−1) + uk (1)
zk = g(xk) + vk (2)

is assumed. Here, xk is the state vector of interest, while
zk represents the vector of observations. uk and zk are both
independent noise vectors with known distributions. f(.) and
g(.) are known (maybe non-linear) functions. There is also
a state transition probability p(xk|xk−1) and a likelihood
function p(zk|xk).

Each particle consists of a certain state xi and an importance
weight ωi. The single particles which are spread around the
state space are combined to the set

Sk =
{〈
x

(i)
k , ω

(i)
k

〉
|i = 1, . . . , Np

}
(3)

which represents the pdf p(Xk, Zk). Here, Xk = {xi, i =
0, . . . , k} contains all states up to time step k. For a large
number of particles the approximation of the pdf p(Xk, Zk)
is then given by

p(Xk|Zk) ≈
Np∑
i=1

ω
(i)
k δ(Xk −X(i)

k ) (4)

where the weights are normalized such that
∑

i w
i
k = 1.

The denser the particles are concentrated in a certain area of
the state space the higher is the probability of the pdf to be
approximated.

In a typical initialisation phase the particles are sampled
from the initial distribution p(x0):

x
(i)
0 ∼ p(x0) (5)

while the weights ω(i)
0 are set to 1/Np.

For a Bayesian Filter framework the transitional density
p(xk|xk−1) corresponds to the system update equation. It is
used to predict the particles to the next time step tk.

When a new measurement zk arrives, all particles need to
be judged based on the likelihood function p(zk|x(i)

k ):

ω
(i)
k = w

(i)
k−1

p(zk|x(i)
k )p(x(i)

k |x
(i)
k−1)

q(x(i)
k |x

(i)
k−1, zk)

(6)



Here, q(x(i)
k |x

(i)
k−1, zk) is the proposal distribution where to

sample from. The new posterior pdf p(xk|Zk) with incorpo-
rated measurement zk is then approximated by:

p(xk|Zk) ≈
Np∑
i=1

ω
(i)
k δ(xk − x(i)

k ) (7)

The described approach is problematic since the variance
of the weights ω(i) will increase over time which leads to
the so called degeneracy phenomenon. In consequence only
a few particles will contribute to the approximation of the
posteriori pdf while most have an importance weight near
zero. To overcome this limitation the resampling step is nec-
essary. In short, resampling should duplicate particles having
a high weight and eliminate particles containing weights near
zero. After resampling the weights of all remaining particles
are usually set to 1/Np. Typical resampling algorithms are
multinomial sampling and systematic sampling [12]. In this
paper KLD-sampling [13] is used since it offers quite equal
performance and the additional benefit of an adaptive number
of particles. Especially relating to bandwidth limitations of
the communication channel it may be necessary to reduce the
amount of particles after the filter has reached a steady state.
KLD-sampling uses the Kullback-Leibler (KL) divergence
which is a measure of difference between two probability
distributions p and q:

K(p, q) =
∑

x

p(x)log
p(x)
q(x)

(8)

In contrast to [13] we used a slightly different algorithm.
The prediction and resampling were separated into two in-
dependent steps. Hence, a constant number of particles is
firstly predicted via the motion model, while the subsequent
resampling step may adapt the number of particles.

B. Distributed Decentralized Particle Filtering

In a decentralized scenario where several nodes commu-
nicate with each other and exchange information, data incest
can occur if naive approaches are used to fuse the information.
This is due to the fact, that in a network estimates based on
local information may come back to the originating sender,
which would lead to an inconsistent estimation if not handled
properly.

In case of particle filters the approach proposed by [9],
[10] provides a reasonable method for removing common
information, which is in general

p
(
x|Zl

⋃
Zr

)
∝

local︷ ︸︸ ︷
p(x|Zl)

remote︷ ︸︸ ︷
p(x|Zr)

p
(
x|Zl

⋂
Zr

)
︸ ︷︷ ︸

common

. (9)

Two operations, multiplication and division, need to be real-
ized implementing (9) using particle representations. Since the
support of two probability densities is not necessarily equal,
first step prior both operations is to guarantee a common

…
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Figure 2. Tree network structure provides a way for removing common
information by knowing which information was formerly sent to which node

support through a conversion of one of the distributions into
a continuous representation.

Equation (9) requires that the common information be-
tween two distributions is hold in order to remove it before
incorporating into the local distribution. Tree-based network
architectures as shown in figure 2 provide a way for easy
tracking of common information between two nodes.

C. Implementation

The system presented in this paper estimates the position
and the heading of a vehicle using a decentralized distributed
filter structure. Each vehicle possesses an independent filter
estimating its own position and heading only, not knowing
about the existence of other vehicles. The state space consists
of three random variables

~x =
(
x y θ

)T
, (10)

where x/y denote the position and θ the heading of the vehicle.
1) Motion Model: As the application environment is au-

tomotive, participants of the cooperative localization system
are vehicles, whose movement is bounded to some constraints,
derived from their technical architecture. Therefore, movement
models can be applied in order to dynamically estimate the
parameters from (10). An overview of motion models can be
found in [1].

Within this paper, the motion model Constant Turn Rate
and Velocity (CTRV) from [14] is used, which assumes that
velocity v and turn rate 1 ω are piecewise constant. The non-
linear state transition using an input ~u(t) is

~x(t+ T ) = f(~x(t), ~u(t)), (11)

where

~u(t) = ( v ω )T . (12)

1Within this paper, turn rate and yaw rate represent the same physical value,
the rotation around the z-axis of the vehicle



Using the constraints of the CTRV model, the resulting state
transition becomes

~x(t+ T ) =

 v
ω sin(ωT + θ(t))− v

ω sin(θ(t)) + x(t)
− v

ω cos(ωT + θ(t)) + v
ω sin(θ(t)) + y(t)

ωT + θ(t)


(13)

for ω 6= 0 and

~x(t+ T ) =

 v cos(θ(t))T + x(t)
v sin(θ(t))T + y(t)

θ(t)

 (14)

for ω = 0.

2) Incorporation of Remote Information: The incorporation
of remote information represented through a probability den-
sity function with particles is done by the following steps:
(a) Synchronizing estimates: As the remote distribution is

usually not synchronized with the local one, the local
distribution is predicted to the remote distribution’s time
using the motion model from section III-C1.

(b) Transformation of received distribution into local
marginalized state space p+(xm|Z): The smoothed
pseudo range double difference distribution p(dp) is
represented by a Gaussian. The received distribution is
shifted by p(dp).

(c) As shown in [10] the division operation

p(x) =
pA(x)
pB(x)

(15)

leads to weights

ω(x(i)) =
pA(x(i))

pB(x(i))q(x(i))
, (16)

where q(x(i)) is chosen to be pB(x(i))

p(x) =
pA(x)
pB(x)2

. (17)

Here, pB(x) is represented by the common last in-
formation pci(x|Z). Due to the particle representation,
pci(x|Z)2 is simply done by squaring the importance
weights.

(d) Transformation of last common information into contin-
uous representation pc(x|Z): The discrete particle repre-
sentation pci(x|Z)2 is now transformed into a continuous
distribution pc(x|Z) by applying a Gaussian kernel

Kh(x) =
1
hnx

K
(x
h

)
(18)

to each sample. The bandwidth h is chosen to be

hopt =
4

nx + 2

1
nx+4

N
− 1

nx+4
p (19)

with nx is the number of dimension and Np the number
of particles (see [15]).

(e) Division of p+(x|Z) by pc(x|Z): The devision is done
by sampling from pc(x|Z) with particles of p+(x|Z)

number of
vehicles

1 2 3 4

vehilce vi 0 0 1 0 1 2 0 1 2 3

error e 4.1 3.5 2.8 3.3 2.6 2.4 3.2 2.6 2.4 2.5

mean
error ē

4.1 3.15 2.76 2.67

Table I
RMSE FOR DIFFERENT NUMBER OF COMMUNICATING VEHICLES AFTER

300 SAMPLES

resulting in likelihoods l+(i). The new information is
calculated by

ω+−(i) =
ω+(i)

l+(i)
. (20)

(f) Fusion of new information p+−(x|Z) with local state: At
first, p+−(x|Z) needs to be transformed into a continuous
representations pc+−(x|Z) as done in step d. Afterwards
sampling from pc+−(x|Z) with particles of local distribu-
tion p(x|Z) is done resulting in likelihoods l+−(i). The
importance weights of the final estimate including remote
information are:

ωF (i) = ω(i) · l+−(i) (21)

(g) Transmission of new state to network: The new estimation
can either be used for incorporating new local sensor
information or be transmitted to connected nodes. In the
latter case the common information between communicat-
ing nodes needs to be set to the estimation sent.

IV. SIMULATION RESULTS

To confirm our assumptions some simulations have been
done. In figure 3 the Root Mean Squared Error (RMSE) of
the position of two vehicles is drawn. The red curve represents
vehicle v0 which only uses local sensor information for the
estimation process and transmits the result to veicle v1 (green
line). Since vehicle v1 starts some seconds later compared to
v0 (simulated delay) it can benefit from the already acceptable
estimate of vehicle v0 which leads to a smaller error at the
beginning. The fact that fusion of remote information not
only lowers the position error but also produces a smoother
estimated trajectory is shown in figure 4. The black line
corresponds to the ground truth of both vehicles while the
green line shows the trajectory of vehicle v1 which is slightly
smoother compared to v0 (pink line).

In table I it has been shown that mean error calculated by the
RMSE of all involved cars after 300 samples decreases while
the number of vehicles grows. The vehicles vi, i = 1, . . . , 3
made use of the networked information fusion algorithm as
proposed in this paper which means that they were transmitting
their local estimates while also incorporating remote informa-
tion.

The influence of the covariance of the smooth double
differences is pointed out in table II. For all three simulated
vehicles the RMSE is calculated at four different times and
compared. A more noisy double difference leads to a smaller



Figure 3. RMSE of two vehicles, one with exclusive local estimates only
(pink), the other with fused remote information (green).

XXXXXXXXσ [m]
samples 10 50 100 300

1 6.6 4 3.4 2.5

2 6.7 4.3 3.6 2.5

5 7.3 4.7 4.3 3.9

Table II
MEAN RMSE OF THREE VEHICLES AT DIFFERENT TIMES WITH σ

VARYING.

improvement through the received remote information and
therefore to a lower estimation performance.

V. CONCLUSIONS

In this paper, it has been shown that decentralized networks
provide a scalable way of fusing information produced by
moving groups of vehicles, which leads to improved position
estimates. Data incest can be avoided by removing common
information using a general method.

The next step will be an evaluation of the proposed system
in real scenarios.
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