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Abstract

Integrity risk is the product of the probabilities of the occurrence of a failure and that it is not
detected the integrity monitoring algorithm. For stand-alone GPS applications, the challenge remains
to provide a ‘realistic as is reasonable’ model of failure occurrence both for the design of integrity
monitoring algorithms and also the derivation of performance requirements for operations which
require their use. Furthermore, the baseline on-board integrity prediction function includes a
conservative bound which limits the availability of system. In order to meet these challenges, a Failure
Modes and Effects Analysis (FMEA) is required which characterises the form of failures and their
impact on the system.

The application of the GPS SPS failure model does not always represent the characteristics of the
various possible failures and their characteristics. The GPS SPS defines the probability of failure
through a binary function whose range error magnitude parameter determines whether the system is
operating nominally or under the presence of a failure. However, many applications assume worst
case bias values at the same probability which may be overtly conservative. It is the goal of this paper
to pave the way for a new concept in failure definition which provides greater detail of the
probabilities of failures over a range of biases. It is shown that even under conservative assumptions;
this model leads to comparable values to those provided within the GPS specification but does not
excessively account for the likeliness of failure at higher bias values.

Furthermore, the determination of missed detection probabilities of the monitoring function may also
incorporate conservative modelling assumptions. Initial results are presented for an accelerated
integration of the integrity risk for weighted RAIM. This approach uses a number of numerical
approximations whose errors are fully accounted and therefore avoids unnecessary conservative
assumptions to guarantee integrity performance. Results for APVI operations using the new
protection level computation find a marked 30% increase in availability over conventional weighted
RAIM.

Introduction

Currently, the GPS standard positioning service (SPS) is designed to meet a minimum performance
standard for civilian use specified in (GPS SPS, 2001)1. The specification allows for major service
failures in very rare cases - three per year over the entire constellation. A major service failure is
defined by a range error exceeding either 30m or 4.42 times the user range accuracy at one sigma
(4.420). This definition is used within the aviation industry and other safety critical applications in
order to quantify the probability of a satellite failure. Due to the GPS SPS not having provision for an
integrity service it is necessary this function must be added such that safety critical applications such
as aviation are able to meet their requirements. A number of aviation operations require integrity risk

! Note that at the time of paper submission a new version of the GPS SPS was released (DoD GPS SPS, 2008). This alters slightly
the probability of failure occurrence and removes the 30m boundary, using just the 4.42xURA in the definition. However, the
premise for the development of a new failure characterisation concept remains unchanged.



be bounded by 10" per hour. Under the GPS SPS specifications, the probability of failure equates to
approximately 10" per hour (Lee et al, 1996) and therefore the integrity monitoring function must
detect failures at the level of 1-10” (10" = 10 x 10) in order to meet the requirements.

This paper considers stand-alone GPS with the additional functionality of receiver autonomous
integrity monitoring (RAIM). In developing RAIM algorithms it is commonly assumed that a failure
occurs with a probability of 10™ per hour and that there is no prior knowledge to the magnitude of a
possible failure. This leads to the requirement on RAIM of a probability of missed detection of 10° for
all biases (Lee et al, 1996). This paper proposes to challenge this assumption and allow advanced
RAIM algorithms to be developed using a more sophisticated failure model.

Stand-alone GPS operations are currently being used for en-route and in some states NPA operations.
However, more stringent operations such as APVI are unable to meet reasonable availability levels
using the baseline weighted least squares RAIM algorithm (RTCA DO-229D, 2006). This is in part due
to the use of a conservative buffer on the protection level (Brown & Chin, 1997). A numerical method
is presented in this paper, conceived as a reasonable compromise between an overly conservative
approximation bound and a full Monte Carlos simulation. By accounting for numerical errors and
tuning for accuracy and speed, a practical numerical method is derived in the second half of the paper
which can improve APVI availability whilst protecting against excessive computational inefficiency.

Failure Modes Database

The Failure Modes and Effects Analysis (FMEA) project run by Imperial College London began by
enhancing the capture and characterisation of GPS failure modes. This has been achieved through
monitoring and analysis of GPS signals and a comprehensive literature review, incorporating most
importantly RTCA Paper 034-01/SC159-867 (RTCA 034-01, 1998) released from the GPS service
providers. In some cases, the data analysed in the monitoring program (UK CAA, 2007) required
consolidating with the aberration description given in (RTCA 034-01, 1998). The standard approach
was to use the probability and other parameters provided by (RTCA 034-01, 1998) but to augment the
magnitude and type of failure observed.

Table 1 shows an overview of the failure modes database. Only the failure modes which present an
integrity threat are included, those which are guaranteed to be detected on-board the satellite or
almost instantly by the user are excluded simply as continuity risks (e.g. clock phase run-off due to
oscillator or oven failure 54000km/hr). An excellent review of the types of failure mode is given in
(Bhatti & Ochieng, 2007)

Failure Mode Probability of Type Magnitude
Occurrence

Clock Jump 1.0e-1/SV / year STEP 0-30m
Clock Frequency Jump/Drift 1.0e-1/SV / year RAMP 2.5m/s
Clock Drift/Phase-Runoff 6.6e-3 /SV / year RAMP 54km / hr
(Atomic Clock Power Supply)
Clock Drift/Phase-Runoff 1.1e-2 / SV / year RAMP 10m / hr
(Atomic Clock Electronics)
Clock Drift/Phase-Runoff 1.0e-2 / SV / year RAMP 10m / hr
(Atomic Clock Servo Mechanism)
Clock Drift/Phase-Runoff 3.3e-1/SV /year RAMP 10m / hr
(Atomic Clock Cs/Rb tube)
Clock Drift/Phase-Runoff 2.1e-5/SV / year RAMP 2164m / hr
(Atomic Clock Tuning Register)
Clock Drift/Phase-Wander 1.0 /SV / year WANDER 1.0m / hr
(Atomic Clock)
Clock Frequency Jump 1.0 /SV / year RAMP 2.0m/ hr
FSDU Upsets 3.0e-1/SV /year STEP 0-30m
Meteor Impact (Delta-V) TBD RAMP 0-10m / hr




MCS Upload Error 5.2e-8 / constellation RAMP 0.0056m /s
(Bad Earth Orientation Data) / year
MCS Upload Error 2.4e-2 /[ upload NOISE 13.7m (10)
(Single Freq. lon. Model)
Operational Error (Too early SV 5.0e-8 / constellation  STEP: RAMP  120m :5m/
return to ‘healthy’ status) / year hr
Operational Error (Not flagged 5.0e-5 / constellation RAMP 120m / hr
‘unhealthy’) / year
Operational Error (Incorrect 6.2e-9 / constellation RAMP 0.0-0.3m/
database control element) / year sec
Orbit Mis-modelling Empirically Derived VARIES Empirically
Derived
Table 1: Failure Modes Database Summary
Bias Error Model
The current failure definition for a GPS satellite is as follows:
P(B>T)=prie (1)
P(B < T) = 1 - pfailure (2)

where prailre is derived from the three major service failures per year (Lee et al, 1996), B is the
measurement bias and T is defined as above to be 30m or 4. 420.

The goal of the failure mode bias model is to generate a file which expresses the probability of the
range error magnitude at a range of bias values (by’s):

P(0<B<b,)=cdf, (3)
........... P(b,<B<b,,) = cdf (4)
........... P(b,,,<B<b_)=cdf_, (5)
e P(b_ <B )= cdf (6)

The cdf parameters are stored in the file to quantify the probability of a bias lying between the
interval boundaries {by}. It is clear from the above formulation that the choice of b;’s is an important
factor. In order to demonstrate the concept the following values were used.

Bias values between 0 and 200m are taken at 1m intervals - 0:1:200.

Bias values between 200m and 1000m are taken at 10m intervals - 200:10:1000.
Bias values between 1000m and 2000m are taken at 100m intervals 1000:100:2000.
This results in a set of 292 b values.

This choice is somewhat arbitary at this stage, but without a demonstration of the required accuracy
of the bias model within the design of a RAIM or other algorithm, a revision is not possible until a
later phase in the research and exploration of the concept. However on the basis of the data
processing undertaken within the FMEA project it was found that bias values beyond 2000m present
an infitesimal threat to NPA operations. More stringent operations, under GPS and in the future
Galileo will be sensitive to smaller biases still and as such the critical range 0-200m for which 1m was
considered a reasonable resolution. If necessary it is feasible to reduce the separation between b
values to improve accuracy at a later stage. The by of 2000m was chosen as a cut off for outliers as
errors of this magnitude would be guaranteed to be detected to probabilities less than 10" by a
suitable RAIM detection function. In any case cdf,,.x could be used to account for such events.

Given this framework it was necessary to convert the probability of each relevant failure mode record
within the failure modes database to the format described above. In practical terms, the output of
this process is a text file of two columns displaying the b values and associated cdf.



Observing the failure mode database summarised in Table 1, it is clear that two complications make
the task of expressing each failure mode in the standard bias format described above. Firstly, the
failure modes occur in a variety of ways and can be categorised as particular failure types (Bhatti &
Ochieng, 2007). Secondly, the probabilities of occurrence are not specified in a standardised form.

With regard to the varying failure type it is noted that a step error may generate an instantaneous
jump in the measurement bias from 0 metres to B metres whereas a ramp error grows at a particular
rate. A number of assumptions are made implicit to the argument at this stage. Most importantly,
ramp errors are assumed to possess a constant ramp error rate. If the true failure mode deviates
greatly from this model, in a grossly exponential fashion for example, the failure mode type may be
invalid, however of the failure modes characterised, such behaviour is not expected. An additional
failure mode type would have to be defined if such a failure mode were discovered in light of GPS llI
or Galileo SV developments.

Due to the variation in time periods over which the failure mode probabilities are specified, the
decision was taken to compute the instantaneous probability of a failure over a given bias range (b; to
bi,1 ). This is relevant to the user as it answers the question ‘Given the GPS constellation at epoch thow
what are the probability of failures of each satellite at each bias?’. This diverges from the traditional
approach of specifying probabilities over one hour or other time period. This is possible because of
the failure mode exposure times are known in addition to assuming there is no temporal overlap of
failure occurrences. If one assumes no overlapping of failures for a single SV then the probability of
failure remains constant between neighbouring time points however close together. This is not true
of measurement noise due to temporal and spatial correlation effects. Therefore, to determine the
spacing of independent samples it is only the measurement noise decorrelation coefficient which
must be considered. At each independent sample one can use the instantaneous bias failure model
described above. Therefore, the task remains to describe a means to compute

P(b,<B< b, | t_, ) for each failure type.
a)
magnitude
/I >
Erail taer time
b)
probability T
e 2
bint b max bias

Figure 1: Ramp Error Type a) Magnitude vs. time b) Probability vs. bias (assumed model)
Ramp Error Type

A ramp error is one which the range measurement has a constant rate of growth from zero until the
failure is detected and mitigated against as shown in Figure 1a. The basis for computing
P(b,<B<b |t ) for the ramp error failure modes is to calculate the length of time the

i+l now

measurement error magnitude for a particular failure mode remains within the rangeb, <B<b,, .

Given any time period (e.g. 1 hour) over which the probability of failure mode occurrence is stated in



Table 1, it is possible to determine the proportion of this time period which equates to the length of
time the measurement error magnitude is within the relevant range.

e.g. Given a ramp error of 0.05m/s which occurs at 1e-5 per hour. This failure will take 20s to increase
by 1m from 36m to 37m which is 5.556e-3 (20/3600) of one hour. Therefore:

P(36m <B< 37m

t..)=(1le-5)x(5.556e-3 )=5.556e-8 (7)
However, consideration of the maximum exposure time is relevant for large bias magnitudes because
the probability defined by (4) must incorporate the probability factor that the failure has not been
detected and mitigated by the OCS. This has the effect of reducing the probability of larger biases
being present due to a ramp error as shown in Figure 1b. The exposure time is specified as a range
(denoted by tiow and thign) by the RTCA (e.g. 1.5 - 4.0 hours) (RTCA 034-01, 1998). Therefore we can
deduce the following two relations:

P( detected

-t <dt ) =0.0 (8)

wen) = 1.0 (9)

tnow

P(detected |t , -t >dt

fail

From these two statements we can further deduce the maximum bias and a maximum undetectable
(for this particular failure mode via the monitoring network) bias as shown in Figure 1b.

(10)
(12)

P( detected |B <b,,) =0.0 where b, =rdt,_,
P(detected|B>b ) =1.0 where b =rdt

high

All that remains is to determine the probability of detection between these two bias magnitudes. Due
to the lack of corroboration for the exposure time periods which relate to these two values, it is
necessary to make an assumption with regard to the likelihood of detection and mitigation within the
range. It is assumed that the probability of detection could be approximated by the form of a
geometric series.

P( detected t, ) = P(undetected t,, ) xP (detected t, |undetected t,, )= (1-q)"q (12)

This makes intuitive sense because it results in low probabilities near the end of the range because
the error would have to have remained undetected up to that point. The decorrelation of
measurement noise which affects the detection of failures by the monitoring network could be
interpreted as leading to a partially discrete system which gives the approximation extra validity. The
graphs shown in Figure 2 demonstrate the form of the probability functions of detection and missed
detection under this model.
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Figure 2: Probabilities of detection (a) and no detection (b) under the geometric

The aim of this model is not to accurately determine the probabilities but to provide the basis of a
further approximation which would bound the probability densities shown in Figure 3. If the
cumulative density function is defined to be linear over the range b,, to b__ then this would bound



a density function similar in form to the geometric series, in fact any with a lessening negative
gradient. The probability of the bias remaining undetected is then given by this linear cumulative
density function.
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Figure 3: Bound of Geometric Series Model by linear function
Step Error Type

A step error differs from a ramp error in that its magnitude remains constant over time between the
failure onset and mitigation following detection (Figure 4a). It is therefore simply necessary to
integrate the probability density function with respect to time, which is equivalent to computing the
area under the graph shown in Figure 4b, normalising to the time period specified in the failure mode
probability of occurrence and then multiplying by the same probability.
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Figure 4: Step Error a) Failure mode magnitude vs. time b) Probability of failure present vs. time c.i)
Single Value - probability vs. bias magnitude c.ii) Range of Values - probability vs. bias magnitude

In some cases the exact value of step error is not fully known and a range of values may be used to
describe the failure’s form. The two cases are shown in Figures 4c.i and 4c.ii.

Noise Error Type



Failure modes resulting in measurement noise are specified by a sigma value relating to an extra
component of measurement noise. It is simply assumed the measurement noise is Gaussian in nature
and a uninormal distribution is used to compute error magnitudes as shown in Figure 5.
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Figure 5: Noise Error Type Gaussian Model
Wander Error Type

The effect of a random wander error type is similar to a random noise component but the magnitude
is a stochastic function of time. The random wander parameter, k represents a mean variation from a
zero error magnitude over a particular time frame. The conservative assumption that detection only
occurs at the end of the detection range specified in the failure mode database; contrary to the ramp
error model type simplifies the analysis. The deviation from the mean is assumed to follow a Gaussian
distribution whose mean variation grows at the rate specified by k.

Bias Model

It is possible to compute a total failure mode bias probability model which sums the probabilities for
each failure mode within the standardised bias range. Also included is an empirically derived model
for orbit modelling errors

P(b,<B<b,) = > P(b,<B<b,,) (13)
failure

modes

This summation is possible due to the assumption of failure mode independence.

In order to compare to the GPS standard, it is possible to compute the probability of a failure resulting
in a bias magnitude of 30-2000m. The results of this summation with and without the addition of the
orbit error model are given below:

P(30<B<2000 ) .. = 8.916e-06 (14)

no_orbit

P(30<B <2000 ), = 9.632e-06 (15)

orbit
This compares with a value of 1.25e-5 per SV per hour (Lee et al, 1996).
Missed Alert Probabilities
In the previous section an overview of a novel characterisation of the GPS failure modes was given.
The next step is to assess how these failures are currently dealt with by the RAIM algorithm. The
ultimate goal is to combine the two phases seamlessly, yet firstly the improvement of missed alert
probability estimation is achieved using a RAIM algorithm and the traditional failure model. The RAIM
system model is summarised below, followed by a description of the accelerated numerical
technique.

System Model

The foundation of the weighted least-squares RAIM formulation is the assumption of an
overdetermined system of linear equations.

z=Hx+ ¢ (16)



where:

z n-dimensional vector of measurements
H : nx4-dimensional geometry matrix defined in the local horizontal frame, with the condition
n>4
: 4 - dimensional vector of unknowns (position and clock bias)
€ : n-dimensional vector of measurement errors

It is assumed that the measurement errors may be modelled as the sum of measurement noise v and
measurement biases b:

e=b+v (17)

and that the underlying measurement noise is normally distributed with covariance matrix X as
follows:

v'~N(0,z) (18)
The linear equation (16) is assumed to have been normalised by down-weighting the measurements
subject to their estimated measurement variances in (18). The resulting measurement errors v are

then uncorrelated and of equal variance.

The weighted least squares estimate has been derived as follows (Walter and Enge, 1995):
Xus = (H'WH) H'Wz (19)

where the down-weighting is defined by setting W to the inverse of £, W=X". The position error,

the difference between the navigation position solution X, and the true position x,, may be
defined from applying the WLS operator to the measurement error vector.
~ 1
€= K5 Xy = (HWVH) H'W (20)

The test statistic shall be defined as the magnitude of the parity vector|p| , Which is equivalent to the

weighted least-squares residual defined in (Walter and Enge, 1995).
p=Pz=P (21)
where P is the parity matrix as usually defined (Sturza, 1988).

A bias in the system is expressed simply by substituting a bias vector into equations 19 and 21.

ebias = (H'WH) H'Wb (22)
pbias =Pb (23)

An important relation is the ratio of a measurement bias projected to both position and parity
domains. This relation holds in the absence of measurement noise is defined by the slope parameter.

) [(HTWH)1 wa]

pbias [P].s 8 (24)



However in the presence of noise, importantly the position error and parity vectors’ stochastic
components have known variances under the model, defined as follows:

Cov(e)=(H'WH)' (25)
Cov(p)=PP"=l,, (26)

In the ordinary least squares RAIM formulation, the stochastic components of e and p are
independent. However, when down-weighting for unequal measurement variances, this relationship
no longer applies and the cross-covariance between e and p is non-zero (Hwang & Brown, 2006)

Cov(e,p)=PW'H(HWH)' (27)

The effect of this non-zero cross correlation can be seen in the error-test statistic (ET) space shown in
Figure 6.
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Figure 6: ET Diagram

The operational requirements for aviation are specified as functions of the probability of hazardous
misleading information (HMI),alert limit and a false alarm rate. This false alarm rate may be used to
derive the threshold for the parity test statistic used.

In order to derive vertical protection limit (VPL) the first step is the computation of a Minimal
Detectable Bias (MDB,) in the parity domain. The probability of missed detection (PMD), which is set
by the RTCA at 0.001 by factoring the probability of a failed satellite 10" into the integrity risk
requirement of 10'7, is used as input to an inverse non-central chi-squared distribution function as
follows:

MDB, X/ (28)

A=Q*(P,,,n-4,T) (29)
such that

P =Q(nM5T, ) foﬁ 240t dt ) (30)

This MDB, shown in Figure 7 represents the smallest bias transformed into the parity domain which
may remain undetected with a probability equal to the Pyp. Therefore larger biases are guaranteed
not to lead to PHMI greater than the requirement. The calculation of VPL then projects this bias into
the position domain by use of the slope parameter, as clearly demonstrated in Figure 7.



ebias,,,, =slope, x MDB, (31)

However, this position error value is not guaranteed to provide a protective limit on the PHMI
because biases less than the MDB, may result in more of the probability density lying in the critical
HMI region. Therefore an additional term is required (Angus, 2006) which protects against the
variation in position error. This is simply the one-sided confidence interval of the position error at the
significance of Pyp.

k - term = k,,, xCov(e),, (32)
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Figure 7: ET diagram - Derivation of VPL

This process is the baseline computation, for predicting RAIM availability specifically for vertical
guided operations in this case. Although the process is similar for the 2D horizontal case, the vertical
requirements are known to be the most critical. There are two points at which this process
excessively over-bounds the true PHMI and leads to an exaggerated VPL prediction. Firstly the use of
a fixed bias is chosen to account for the bias magnitude ambiguity and is computed on the basis of
detectability alone, whereas the definition of integrity risk includes the joint probability of a
positioning failure (the VPL or VAL is exceeded by the position error) and no detection. Secondly, the
k-term is applied at this MDB, whereas it is designed to account for position variation at lower biases
and its relevance increases as the bias decreases.

The following sections describe how by using the bias failure model described above and integrating
an approximation of the joint position error and parity distribution, these two problems may be
avoided. A Gaussian approximation of the joint distribution is now considered.

Gaussian Approximation

The cross-correlation between the parity and error vectors must be considered when determining a
method which computes the PHMI without conservatively de-coupling the worst case marginal
distributions.

A Gaussian approximation is used to model the joint distribution between the vertical position error
and the magnitude of the parity vector. This bi-variate Gaussian has a mean defined by the ebias

value and the magnitude of pbias, (ebias,pbias). The covariance matrix is formed from the covariance

matrices of the position error, parity vector and the cross-covariance matrix.



c. c.
zpe =[ PP p ] (33)
C C

where
Cpo=hs (34)
c.= (H'WH)' (35)
c, = [PWTH(HTWH)l] (36)

The modulus operation applied to the vertical column of the Cov(e,p) matrix is required to ensure

the worst case coupling in variation between the parity test statistic and vertical position error. A
conservative approximation is therefore preferred to a more accurate but less reliable approximation.

Integration Technique

The WRAIM integration process searches for a worst case bias over the hazardous region. The
probability distribution of position failure is a monotonically increasing function and the probability
distribution of no detection is a monotonically decreasing function. Therefore the probability of a
missed detection occurring as a function of bias has a single maximum over this range. This ensures
that performing a nested search converges to an optimal solution and is quicker, more elegant
solution than finding the worst case bias simply by an incremental search.
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Figure 8: Iterative Worst Case Bias Search

Figure 8 shows an example of the nested worst case bias search. Here the order of the search is eight,
which requires the evaluation of nine integrals. At each iterative step the worst case is selected and in
addition it’s two neighbours which form the boundary of the following step.

The numerical integration at each bias must take account of the correlation between parity vector
and position error. This is achieved by computing the marginal position error distribution conditional
on the magnitude of parity vector under the Gaussian bivariate assumption described above in
equation 33. The conditional distribution of position error is a univariate Gaussian distribution:

©|lp] )~ BXm,+5m ,,~ (37)

where the mean of the Gaussian approximation is defined as follows:

m
2

m

e



The deviation in the mean and variance of the conditional position error distribution may be
computed using conditional distribution theory and in the case of the multi-dimensional Gaussian, the
Schur complement of I, is used to generate the variance.

- mp) (39)
I=c,-cClc (40)

ep“pp pe

ém_ =c_ct q|p

ep - pp

Figure 9 shows the integration region. A lower bound is chosen to reduce the range of values for
which the integration is performed and thus improve accuracy at a cost of the size of eps. At each
integration point an error function must be computed. This is achieved using a highly accurate
analytic approximation (Johnson & Kotz, 1995) with parameters derived in equations 39 and 40.

vertical
position
error

VPI

~ hreshold

parity magnitude |p|

Figure 9: Weighted RAIM Integration

The numerical errors present are due to the Gaussian approximation to the chi-square distribution of
parity vector, the analytic approximation to the error function and the numerical integration errors,
both due to truncation and round-off error. Each of these errors has been fully analysed and their
impact included in the determination of integrity risk. In order to compare to the conventional
conservative bound, the integrity risk is used to search iteratively for a VPL which marginally meets
the requirements.

VPL Results

The first testing phase of the new integrity computation is to compare the proposed numerical
integration VPLs to those of the conventional method but also an ideal VPL derived from iteration of
Monte Carlo simulation data. This was undertaken at selected airports around the globe. Figure 10
shows the VPL over an entire geometry day at Chennai international. The close match between all
three procedures provides validation of the computation strategy. Expectedly the new procedure
(green) is more conservative than the ideal solution (red), yet notably provides lower VPLs than the
conventional method. The tracks for Sydney, JFK and Gatwick all showed similar behaviour.
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Figure 10 Chennai International Airport VPLs

Following this initial validation and testing of the proposed VPL numerical method, an availability
assessment was undertaken for APVI operations (50m VAL) over a narrow strip of the world surface
(1°W to 1°E) from pole to pole. This choice was made as performance varies more notably as a
function of latitude than of longitude. An extensive simulation run of the entire service volume is to

be completed and published in the near future.

The results of the 2 degrees of longitude
assessment are shown in Figure 11. This clearly
shows the marked improvement through use of
the numerical procedure. The difference in
availability is between 20-60%. The greatest
improvement is felt at low latitude values around
the equatorial regions. The performance gains
may be expected to come at a considerable
computational cost but performance on a
standard desktop PC is such that the VPL is
computed in approximately 1 second.

Conclusions and Focus of Future Work

The FMEA research process undertaken has
proposed a new concept of GPS failure and lead to
a more accurate assessment of RAIM
performance.

The proposed failure model provides greater
detail and realism by defining a probability model
of failure with respect to the magnitude of error
bias. This is achieved for each failure mode type
and allows any failure which fits one of these
models to be included within the analysis. The
obvious downside to such an approach is the lack
of information regarding some GPS failure modes,
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Figure 11: APVI Availability

particularly the lack of predicted probability values. However, it is hoped that our knowledge of such
failures, particularly ionospheric scintillations and meteor impacts will grow significantly over the
coming years. Furthermore, the advent of a civilian GNSS in the form of Galileo should ensure greater
freedom of information with regard to system failures. On the downside, the continuous
development of GPS satellite vehicles introduces the possibility of new failure modes not previously
encountered, but given that a failure model is necessary it makes practical sense to consider a more

sophisticated model than that currently employed.




The performance of the new method for computing missed alert probabilities and then VPLs has been
shown to exceed that of the conventional VPL calculation. The method requires further testing and
validation as well as an extension to incorporate the probability model proposed in the first half of
this paper.
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