Integrated eLoran/GPS Receiver Development Platform

Producing the next generation of Integrated GPS/eLoran Receivers

Presentation for:

ILA

October 16, 2007

Outline

- Project Overview
- Receiver Hardware Specs
- Software Development 'Process'
- Current Status

Project Overview

- Goal: Develop an Integrated eLoran/GPS
 Development Platform
 - Relatively low cost.
 - User upgradeable.
 - Easily field deployable.

Team

Maine Aerospace Consulting

Rhode Island

Hardware Specs

- 4 channel front end
 - Allows for various antenna configurations.
 - Jumper configurable power options to allow a 'phantom' DC power supply up the antenna wire.
 - Jumper configurable 4 stage filter/amp on each channel. Allows up to 8 pole filter with >60db dynamic range.
 - Digitally controllable gain.

Hardware Specs (cont)

- ADC's
 - $-\delta/\Delta$
 - 16 bit
 - 1.2Msps
- 4 channels multiplexed into 2 DSP inputs
 - 4 channels can operate simultaneously at up to 600ksps
 - 2 channels can operate simultaneously at up to 1.2Msps

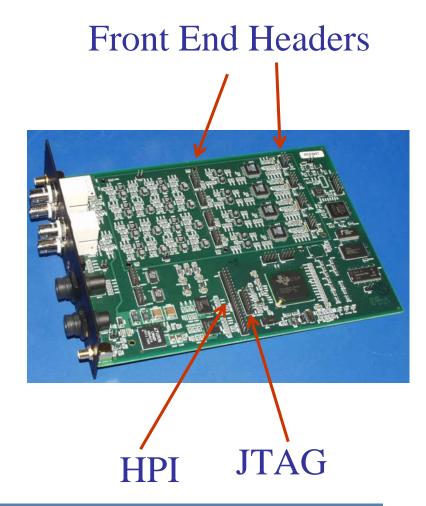
Hardware Specs (cont)

- Floating Point TI DSP
 - Allows 'non-embedded' developers to more easily generate code
- Memory
 - 16MB SDRAM
 - 1MB Flash

GPS

- uBlox Antaris 4 module
 - LEA-4h
 - 16 channel
 - WASS and DGPS supported
 - 4Hz position update rate
 - Flash EPROM allows for embedded code configuration

I/O


- Loran RF input-4 BNC
- GPS RF-SMA GPS RF
- External frequency reference-SMA
- 12V power
- 6 pin data
 - 2X RS232 tx & rx
 - GPS 1pps
 - GND

Development Goodies

- Data tap pins
 - Post amp/filter
 - Post ADC
- 20 pin HPI connector
 - Allows design of future interface with processor to make DSP slave
- 14 pin JTAG
 - Allows for reprogramming embedded code

Mathworks Design Flow

- CrossRate part of Mathworks 'partner program'
 - Excellent developer support
- MATLAB->Simulink->RTW->TI Code Composer
 - Allows for 'auto' code generation
 - With all software tools, a change in the Simulink model can be in the form of embedded code on the target boards in minutes.
- Plenty of caveats
 - Need to understand how Simulink generates code in order to make 'right' changes to model
 - RTW doesn't always generate the most efficient code

Overall Project Status

- Physical Hardware complete and nominally operational
- Receiver code running on DSP
- Hardware Driver Library Still being fleshed
 out.
- Once drivers are finished a nominal set of receiver algorithms will be loaded and tested.

Acknowledgements

- This was a significant team effort and we appreciate everyone's input and advice.
- Mitch Narins-FAA
- Dr. Don Hummels-UMaine
- Dr. Greg Johnson-Alion
- Dr. Peter Swaszek-URI
- Captain Richard Hartnett-USCGA
- Dr. David Rubenstein-Maine Aerospace

